
A System for Contextual Spell-checking and Diacritics Completion For
Czech

Abstract

We present Korektor – a flexible and pow-
erful text correction tool for Czech that
goes beyond a traditional spell checker.
We use several language models and a
morphological analyzer to offer the best
ordering of correction proposals and also
to find errors that cannot be detected by
simple spell checkers, namely spelling er-
rors that happen to be homographs of ex-
isting word forms. Our system can also,
without any adaptation, generate diacritics
for Czech text.

The evaluation demonstrates that the sys-
tem is a state-of-the-art tool for Czech,
both as a spell checker and as a diacrit-
ics generator. We also show that these
functions combine into a potential aid in
the error annotation of a learner corpus of
Czech.

1 Introduction

The idea of using the information coming from the
context of a misspelled word to improve the per-
formance of a spell checker is not very new (Mays
et al., 1991). Recent years have seen the advance
of sophisticated spell checkers that use context in-
formation. For exampleGoogle Suggestchecks
search queries for spelling errors and offers quite
reasonable corrections.

These methods are usually based onnoisy-
channelor winnow-basedapproach (Golding and
Roth, 1999). The system described here also be-
longs to thenoisy-channelclass. It makes exten-
sive use of language models based on several mor-
phological factors, exploiting the morphological
richness of the target language.

Advanced spell checkers of this type have a nat-
ural overlap with abilities of rule-based grammar

checkers, because grammar errors also form n-
grams with low probabilities.

The purpose of this work was to implement
a flexible system capable of performing diverse
tasks such as spelling correction, diacritics com-
pletion and abbreviated text expansion by a very
simple module replacement. In addition, our goal
was not only to come up with a scientific proto-
type. From the beginning we aimed at an end-user
system that would provide a better spell checker
for Czech than any current system and would be
practical in everyday use.

In Section 2, the statistical models used in this
work will be introduced together with the descrip-
tion showing how they were utilized for the given
tasks of spell-checking and diacritics completion.
Section 3 describes the details of the system im-
plementation and Section 4 presents the results of
the performance evaluation. Section 6 contains
conclusions based of what has been done and out-
lines possible plans for the future.

2 Statistical Model

The task of context-sensitive spelling correction
and diacritics completion can be seen as a problem
of sequence decoding which is often formulated in
terms of the noisy-channel model. A transmitter
sends a sequence of symbols to a receiver. During
the transfer, though, certain symbols of the trans-
mitted sequence are garbled due to the deficien-
cies of the transmission channel. The receiver’s
goal is to reconstruct the original sequence using
the knowledge of thesource(i.e. how a Czech
sentence looks like) and the transmission channel
properties.

2.1 Source Modeling

Several feature functions1 were used to model the
source:

• word forms feature -Ff

Ff (w1...wn, w
′

1...w
′

n) =
∑n

i=1 ff ((fi−2, fi−1) → fi) =
∑n

i=1 log P (fi|fi−2, fi−1)

• morphological lemma feature -Fl

Fl(w1...wn, w
′

1...w
′

n) =
∑n

i=1 fl((li−2, li−1) → (li, fi)) =
∑n

i=1 logP (fi|li) + log P (li|li−2, li−1)

• morphological tag feature -Ft

Ft(w1...wn, w
′

1...w
′

n) =
∑n

i=1 ft((ti−2, ti−1) → (ti, fi)) =
∑n

i=1 logP (fi|ti) + log P (ti|ti−2, ti−1)

The source feature functions are task indepen-
dent. They try to ensure the grammaticality of the
output sentence. The probability measures were
estimated on the basis of n-gram counts collected
from a training corpus. Interpolated Kneser-Ney
(Kneser and Ney, 1995) smoothing was used.

A large scale text corpus was needed in or-
der to produce well-estimated language models
and word emission models. This need was met
by Czech Web Document Collection(Marek and
Pecina, 2007), which is a collection of 111 million
words contained in 223 000 articles downloaded
from news servers and on-line archives of Czech
newspapers. N-gram counts for each morpho-
logical factor and counts ofform-lemma and
form-tag combinations were collected. For the
word forms and lemmas, n-grams up to order 3
were collected. For morphological tags, 4-grams
were collected as well.

2.2 Channel Modeling

A single channel featureFch estimates the proba-
bility of word w

′

being transferred as wordw:

Fch(w1...wn, w
′

1...w
′

n) =
∑n

i=1 fch(fi|f
′

i) =
∑n

i=1 log P (fi|f
′

i)

1For the convenience of the reader, the feature functions
are based on trigram statistic in the descriptions. However,
higher order n-grams are supported as well.

The transmission feature provides the binding
between the input words and the output words.
The score is assigned according to the similarity
of the output words to the input words accord-
ing to the task specific similarity measure – for
the spelling correction problem, it takes into the
account the probabilities of specific typing errors.
Transmission channel for the diacritics completion
is constructed in such a way that it assigns a uni-
form cost to all variants of an output word with
diacritics and infinite cost to all other words.

2.3 Log-linear Model

A log-linear model was used to combine all fea-
ture functions into a single statistical model. A
general equation capturing a log-linear model for
decoding of sequencew

′

1...w
′

n can be written as
follows

(w∗

1...w
∗

n) = argmax
(ŵ1...ŵn)

N
∑

j=1

αj×Fj(ŵ1...ŵn, w
′

1...w
′

n)

whereFN
j=1 are feature functions,αN

j=1 are their
weights andw = (f, l, t) denotes the tuple of fea-
tures representing the given word.

2.4 Hidden Markov Model and Viterbi
Algorithm

Exhaustive search for the best hypothesis is not
plausible since the number of hypotheses grows
exponentially with the length of input sentence.

However, the Viterbi algorithm can be used for
sequence decoding since all feature functions are
based on statistical estimators with limited his-
tory (i.e., they estimate the probability of the next
event based on the limited number of past event).
This allows us to define a Hidden Markov Model
(HMM) where states correspond to the bigrams
of triplets w = (f, l, t) and can be denoted as
(whist,wact). Transitions are defined for all pairs
of states of the form(w1,w2) → (w2,w3) and the
transition costs can be expressed, in conformity
with the suggested log-linear model, as

f
(

(wf1,wf2) → (wf2,wf3)
)

=
αf × ff

(

(f1, f2) → f3
)

αl × fl
(

(l1, l2) → (l3, f3)
)

αt × ft
(

(t1, t2) → (t3, f3)
)

Emission costs of HMM are defined as

g
(

w
′

2|(w1,w2)
)

= αchfch(f
′

2|f2)

wherew
′

i denotes the word at positioni in the orig-
inal sentence.

The Viterbi algorithm (Viterbi, 1967) finds
the most probable sequence of statesQ =
q1, q2, q3, ...qT of the given HMM when a se-
quence of observationsS = w

′

1, w
′

2, w
′

3, ..., w
′

T is
given.

The HMM cannot be represented explicitly
since the number of possible states and transi-
tions is enormous. Instead, they are built during
the evaluation of the Viterbi algorithm. Ati-th
Viterbi stage, only the states with significant emis-
sion probability for the observationw

′

i are evalu-
ated.

2.5 Error Model For Spelling Correction

The error model used in this work is based on the
model of (Church and Gale, 1991). They consider
only candidate words obtained by one edit opera-
tion – insertion, deletion, substitution, swap. Edit
operations have their distinct probabilities, i.e. the
probability of the letter substitutions → d may
differ from the probability ofe → a. Letter in-
sertion and deletion probabilities are also context-
conditioned.

These probabilities were established from the
large text corpus. They considered each word that
does not appear in the dictionary and is not further
than one edit operation from a word included in
the dictionary as spelling error. They built their er-
ror corpus out of such words. First, they set prob-
abilities of all edit operations uniformly. Later on,
they iteratively spell-checked their error corpus,
found the best correction for each word and up-
dated edit probabilities according to the proposed
error → suggestionpairs.

This method of finding spelling errors was
tested on the WebColl corpus (see Section 2.1).
However, this method turned out to be useless.
The reason was that the vast majority of words
identified as spelling errors were correct words or
colloquial word forms.

The modified version builds an error corpus out
of the words recognized by the spell checker as
spelling errors, however there must be a signifi-
cant evidence that the proposed correction is right,
otherwise the spelling error is not added to the
error corpus. To be more specific, both bigrams
(wi−1, s) and(wi+1, s), wherewi−1 is the prede-
cessor of a misspelled worde, wi+1 is the suc-
cessive word ands is the correction suggestion,

Error Type Cost
Substitution – horizontally adjacent letters 2.29
Substitution – vertically adjacent letters 2.661

Substitution –z → s 2.747
Substitution –s → z 1.854
Substitution –y → i 3.167
Substitution –i → y 2.679

Substitution – non-adjacent vocals 3.706
Substitution – diacritic omission 2.235

Substitution – diacritic redundancy 2.250
Substitution – other cases 4.285

Insertion – horizontally adjacent letter 2.290
Insertion – vertically adjacent letter 2.661
Insertion – same letter as previous 1.227

Insertion – other cases 2.975
Deletion 4.14

Swap letters 3.278

Table 1: Spelling Error Types together with their
costs (−log10 of their probabilities)

must be present in the language model, otherwise
the error-correction paire → s is not included in
the error corpus. Recall of this method is rather
small, but the precision is quite satisfactory and
most of the recognized error-correction pairs were
correct. This method identified 12761 words out
of 111,000,000 words in WebColl as spelling er-
rors, the classification of these errors is shown in
Table 1. The granularity of spelling error types be-
ing distinguished is much smaller than in (Church
and Gale, 1991). Nevertheless, for languages with
straightforward phonology↔ orthography map-
ping, such as Czech, error model distinguishing
error probabilities mostly on the basis of keyboard
layout can be sufficient.

2.6 Letter Language Model For Diacritics
Completion

It may happen that for a given word of the in-
put sentence, no candidate word is found. The
example of such a word is the wordnemeck-
ofrancouzsky‘German-French’. In such a case,
the word remains untouched and no diacritics is
added. However, there is a high probability of
error in such case, in the provided example the
diacritics should rather be completed asněmeck-
ofrancouzský(adjective) orněmeckofrancouzsky
(adverb).

In order to cut down the number of errors made
on unknown words, a custom implementation of
the Viterbi decoder was provided. The states on
the underlying HMM are tuplets of letters and
the transition probabilities are given by a letter n-
gram language model (it estimates the probabil-
ity of next letter on the basis of previous letters).

The aim of this Viterbi decoder is to find the most
probable letter sequence given the input letter se-
quence. The only substitutions allowed are the
substitutions that add diacritics.

Using this approach, diacritics can be added
correctly even to the unknown words.

Given that the vocabulary of letter n-gram lan-
guage model is extremely small (the size of the al-
phabet), it is possible to train letter LMs of a very
high order. In this work, letter LMs of the order
up to 7 were trained. The letter LMs were trained
on the training part of WebColl.

The contribution of using letter LMs was exam-
ined during the evaluation, Table 4 shows the sig-
nificant accuracy improvement when this feature
is used.

3 System Implementation

Since the system was developed from the begin-
ning with the goal of wide distribution of an end-
user system, not just a proof of concept, a special
care was devoted to the efficiency of its implemen-
tation, in terms of both low memory and CPU foot-
print.

The spelling dictionary was implemented as
the TRIE (Fredkin, 1960) data structure and the
language models were as the ZipTBO structures,
using about 4 bytes per n-gram (Whittaker and
Raj, 2001)2. The system uses caching exten-
sively, statistics for recently used n-grams, correc-
tion candidates for recently used words and many
other intermediate results are stored in less mem-
ory efficient but rapid access speed structures to
allow better performance without a significant im-
pact on the memory consumption.

The system was implemented in C++ and can
be used either as a command line utility or as a
SpellServer and a System Service on Mac OS X.
Mac OS X was chosen for practical reasons as
the initial distribution platform. Its API allows to
make our services (spellchecking, diacritics strip-
ping and completion) easily available to all mod-
ern applications on the platform.

2It is possible to go even further and reduce the memory
consumption to 3 bytes per n-gram (as proposed by (Church
et al., 2007)), but this representation is less CPU-efficient and
ZipTBO seemed to be more suitable for the given task.

4 Evaluation

4.1 Diacritics Completion Results

The diacritics Completion was evaluated on three
different datasets, a part of the WebColl corpus de-
voted for testing and two different books3: Martin
Gilbert: A History of the Twentieth Century(non-
fiction) andLion Feuchtwanger: Foxes in the Vine-
yard (fiction).

The main parameters are the weightsαf , αl and
αt of featuresFf , Fl andFt.

First, the contributionsFl andFt were exam-
ined separately. In these experimentsαf was rang-
ing from 0 to 1 and the weight (1 − αf) was
given eitherFl orFt, all the language models used
were trigrams. The results of such experiments are
shown in Tables 2, 3. It is clear from the plots
that both featuresFl, Ft improve the system per-
formance. However the contribution ofFt is more
significant. Surprisingly, it seems to be better to
give all the weight toFt than to give all the weight
toFf .

The performance boost achieved by usingFt is
most visible on a comparison of results achieved
on history domain and fiction domain data. For
baseline setup (αf = 1, αt = 0), the accuracy is
97.39% on non-fiction data and 96.74% on fiction
data, which means that the error rate is 25% big-
ger on fiction data. Nevertheless, by increasing the
weight ofFt the difference in performance was be-
coming less significant and for the best parameter
settings (αf = 0.4, αt = 0.6), the error rate on
fiction data was only 7% bigger (97.72% accuracy
on fiction data and 97.89 on non-fiction data).

Next, the estimation of the best parameter set-
ting for each data set was done using a simple hill-
climbing algorithm (description can be found in
(Russell and Norvig, 2003)). As the starting point,
all the weights were set equally. The resulting pa-
rameters and the accuracy values are shown in the
Figure 4. The results of experiments with the let-
ter LM feature turned on were made as well for
the particular settings. It can be seen that the use
of letter LM for the completion of the unknown
words improves the results significantly.

The comparison between CZACCENT4, the
diacritics completion tool provided NLP Center
of Masaryk University Brno, and the diacritics
completion provided by Korektor was made on

3Czech translation were used for foreign-language origi-
nals

4http://nlp.fi.muni.cz/cz_accent/index.php

αl non-fiction fiction WebColl
0.1 97.45% 96.82% 98.16%
0.3 97.49% 96.86% 98.21%
0.5 97.51% 96.85% 98.20%
0.7 97.45% 96.77% 98.09%
0.9 97.18% 96.48% 97.79%

Table 2: Results ofform – lemmaexperiments.
Only Fl andFf are used for source modeling and
αf = (1− αl).

αt non-fiction fiction WebColl
0.1 97.66% 97.20% 98.35%
0.3 97.83% 97.60% 98.53%
0.5 97.88% 97.74% 98.57%
0.7 97.85% 97.71% 98.52%
0.9 97.62% 97.53% 98.26%

Table 3: Results ofform – tagexperiments. Only
Ft andFf are used for source modeling andαf =
(1− αt).

the non-fiction data set. The accuracy achieved
by CZACCENT was 95.85% and the accuracy
achieved by Korektor was 98.3%, which means
that the error rate of Korektor was almost 2.5 times
smaller.

4.2 Spell-checking Results

The quality of spell checkers is usually measured
by the spelling correction error rate (i.e., the prob-
ability that the first given suggestion is correct, or
that the correct suggestion is included in the list
of first three suggestions etc.) If the context sensi-
tive spell checker is considered and the ability of
recognizing the real-word errors is to be tested,F-
measurebased onprecisionandrecall can be used.
It is a good indicator of a quality of a classifier.

During the evaluation of spelling correction,
the optimal parameter settings (weights of distinct
feature functions) estimated for the diacritic com-
pletion task were used based on the assumption
that the featuresFf , Fl andFt are task indepen-
dent and that their weighting obtained for one task
will perform well for other tasks as well. The rea-
son why we made no separate parameter tuning
was that the size of available annotated spelling
error data was too small. The weights were set ac-
cording to the optimal setting for Diacritic Com-
pletion on non-fiction, i.e.αf = 0.31, αl = 0.28
andαt = 0.41. Channel featureFch was assigned

a weightαch = 1.0 which assigns the same im-
portance to both source model and channel model.

For the evaluation of spell-checking, three dif-
ferent data sets were used.

• Error corpusChyby(Pala et al., 2003)

• Audio Book Transcription

• WebColl – testing set – semi-automatically
recognized spelling errors in the part of We-
bColl not used during the training

• Learners Corpus

The error corpusChyby (Pala et al., 2003)
which is being built in Brno is a collection of
essays written by students of Brno University
of Technology, annotated for errors including
spelling, morphological, syntactic and stylistic er-
rors. The spell-checking was tested on spelling
and morphological errors since these types of
errors are possibly recognizable by the system.
There were 744 such errors and out of this number,
321 were real word errors. The high ratio of real
word errors show that most of the student works
were already spell-checked.

The Audio Book Transcription (Audio) testing
set contains 218 spelling errors (out of this num-
ber, 12 errors are real-word errors) and there were
1371 words in total. The dataset was constructed
by making transcriptions of an audio version of a
Czech novel by Jaroslav Hašek:Osudy dobrého
vojáka Švejka‘The Good Soldier Švejk’.5 There
was no post-correction made on the transcribed
text and the spelling error rate in the resulting text
is relatively high.

WebColl testing set was created out of the part
of WebColl not used during the system training.
Spelling errors were collected semi-automatically
with the use of the Korektor. The words identified
by the spell-checker6 as spelling errors were ex-
amined manually and the words that were flagged
as spelling errors by mistake were filtered out. The
result of this process was the set of sentences con-
taining spelling errors authorized by a human. The

5The audio extracts can be downloaded
for free from the web-sites of Český rozhlas:
http://www.rozhlas.cz/ctenarskydenik

6The spell-checker made look-up for the out of vocab-
ulary words easier. The correction suggestions given by
spell-checker were not taken into the consideration duringthe
creation of golden standard data, so the fact that the spell-
checker that is to be tested participated in the creation of the
testing set does not invalidate the testing set.

dataset αf αl αt accuracy – no Letter LM accuracy – with Letter LM
non-fiction 0.31 0.28 0.41 97.9% 98.3%

fiction 0.31 0.14 0.55 97.7% 97.9%
WebColl 0.34 0.33 0.33 98.6% 99.1%

Table 4: The best accuracy values achieved on each testing set.

golden standard data were created manually in the
next step. This approach made the collecting of
errors in the WebColl testing data feasible, how-
ever all the real-word errors were missed (they
were overlooked, because they were not flagged
as spelling errors by spell-checker in the first step).
Because of this, only the evaluation of suggestion
accuracy could be done for this data.

The results of spelling correction accuracy eval-
uation for Chyby, Audio and Webcoll are shown in
Table 5 and the results of real word error detection
evaluation are shown in Table 6. For the Au-
dio dataset, comparison with the Microsoft Word
2007 spell checker with grammar checking fea-
tures turned on was made. Only the accuracy on
the first suggestion was made for MS Word spell
checker since there is no API that would allow to
do the evaluation automatically. The results sug-
gest that accuracy on a single suggestion is much
higher for Korektor as well as the ability to detect
real word spelling errors. The cases when the MS
Word spell checker marked a grammar error were
all because of capitalization problems, which sug-
gests that there is no statistical real-word error de-
tection in the Czech version of MS Word7 Signif-
icantly smaller spelling correction rate on Chyby
corpus can be caused by the fact that the character-
istics of language in Chyby corpus (technical top-
ics) differs significantly from the the training data
characteristics (newspapers).

4.3 Correcting Errors in a Learner Corpus
(joint task)

A learner corpus consists of texts produced by
learners of a second or foreign language. Deviant
expressions can be corrected and/or annotated by
error type tags. The error tagging system for a
learner corpus of Czech (CzeSL– Czech as a Sec-
ond/Foreign Language)8 is based on a two-stage

7However, the MS Word spell checker for Czech is
equipped with other capabilities that Korektor does not pos-
sess such as punctuation checking.

8See (Hana et al., 2010). The project is funded by the
European Social Fund and the government of the Czech Re-
public (project no. CZ.1.07/2.2.00/07.0259).

annotation design, consisting of three levels.
Level 0 includes transcripts of the original

handwriting. At the level of orthographical and
morphological corrections (Level 1), only forms
incorrect in any context are treated, except for ob-
vious misspellings resulting in homographs. All
other types of errors are corrected at Level 2.
Links connecting forms at different levels are la-
beled with their error type.

In a preliminary study of 67 short essays, dou-
bly annotated at both levels by correct forms and
error codes, the primary aim was to verify the
feasibility of the annotation scheme by comput-
ing inter-annotator agreement scores. Addition-
ally, Korektor was used to see whether an auto-
matic correction of learner texts is viable as a way
to assist the annotator. At the same time, this ex-
periment helped to evaluate its results.

Among the total 9,372 tokens, 918 (10%) were
not recognized by a tagger (seemorčein (Spous-
tová et al., 2007)). Even more forms were judged
as faulty by the annotators: 1,189 (13%) were cor-
rected in the same way by both annotators at Level
1 and 1,519 (16%) at Level 2.

Results of Korektor were compared with those
of the tagger and with forms at Level 1 (L1) and
Level 2 (L2), provided both annotators were in
agreement. Korektor was run in three (batch)
modes: (i) “autocorrect” (as proofreader), (ii)
“remove-diacritics” followed by “diacritics” (as
diacritics assigner), and (iii) same as in (ii), fol-
lowed by “autocorrect”, the latter two to test the
hypothesis that diacritics is a frequent source of
errors.

Although the tagger includes a guesser, it makes
no attempt to correct an unknown word form, only
guesses its morphosyntactic tag and lemma. Ko-
rektor is deemed to be successful if it agrees with
the tagger in the correct/incorrect status of the
form.

Table 7 shows figures for the tagger. The rows
give results for the three modes:cor for mode (i),
dia for (ii), and c+d for (iii). The columnc’cted
gives the counts for forms corrected by Korek-

Number of suggestion WebColl Chyby 1 Chyby 2 Audio (Korektor) Audio (MS Word)
1 91.4% 73.5% 82.3% 91.6% 71.2%
2 95.1% 80.1% 80.9% 97.2% -
5 96.3% 80.9% 90.5% 98.6% -

Table 5: Spelling correction rates achieved on the different datasets. For the Chyby corpus, two measure-
ments were taken. InChyby 1, all spelling errors are considered. For theChyby 2, only those spelling
errors for which an appropriate correct version is in the lexicon are taken into account.

Chyby Audio (Korektor) Audio (MS Word)
Precision 0.41 1.0 0.5

Recall 0.24 0.77 0.08
F-measure 0.31 0.87 0.14

Table 6: Real word error correction statistics for Audio dataset and Chyby corpus.

tor. The columnunkn gives the number of cases
where the tagger flags a form corrected by Korek-
tor as unknown. The results of the tagger are as-
sumed as truth for precision (unkn/c’cted) and re-
call (unkn/918).

Precision is not a fair measure here, because
the tagger never flags real-word errors, while
Korektor often manages to use local context to
replace a form with an orthographically close
but morphosyntactically quite different form:
podlé→podle, jejích→jejich, žit→žít, libí→líbí,
ze→že, divá→dívá, drahy→drahý, mel→měl,
jích→jich, čine→číně. Diacritics represents a sub-
stantial share of problems in learners’ writings,
and the preprocessing of the input by the diacrit-
ics remover and assigner (iii) means a significant
improvement.

mode c’cted unkn prec recall F-msr
cor 1151 888 0.77 0.97 0.86
dia 1176 795 0.68 0.87 0.76
c+d 1315 906 0.69 0.99 0.81

Table 7: Comparison with tagger, which identified
the total of 918 unknown forms

Corrections made by the annotators can be com-
pared verbatim with those proposed by Korektor.
Korektor scores whenever it matches the form at
L1 or L2, respectively. The two annotators must
agree about the corrected form.

At L1 the total number of corrections (1189) is
higher than the number of forms unknown to the
tagger (918) because the annotators correct some
real words. The result is a lower recall. Precision
stays the same because L1 is similar to the tag-

ger: it still largely abstracts from context. E.g.,
the annotators are instructed to leave errors due to
missed grammatical concord for L2. The data are
shown in Table 8 – the columnc’cted is identical
to that in Table 7, but thewrong column shows the
number of cases where the annotators agree with
Korektor about a correction.

mode c’cted wrong prec recall F-msr
cor 1151 846 0.74 0.71 0.72
dia 1176 780 0.66 0.66 0.66
c+d 1315 904 0.69 0.76 0.72

Table 8: Comparison with corrections at L1,
where annotators agreed on the total of 1189
wrong forms

It some cases where Korektor does not agree
with the annotators, but both Korektor and the an-
notators indicate an error (170 such cases at L1 for
mode c+d), mode (i) without the diacritics com-
ponent fares better (in 30 cases out of 170). Here
removing and reassigning diacritics takes Korek-
tor too far (Table 9). In some cases the L1 and L2
versions differ and none of the methods matches
the contextually correct version of L2 (pláž, lépe).

In 150 cases Korektor suggests a correction
when L1 prefers the original, but in 37 cases Ko-
rektor agrees with an annotator at L2 (in 16 cases
with both), which means that the real precision is
higher. The rest of the cases are mostly inflectional
issues, often due to misassigned diacritics, but also
annotation errors (shared by both annotators).

L2 is problematic for evaluation in its own right.
Some error types handled here are due to wrong
word order, style, phraseology and a few others

R0 c+d R1=cor R2
plaži pláží pláži pláž
tydnů týdnů týdnu týdnu
lepšé lepše lepší lépe
jide lidé jde jde
vždicky vodičky vždycky vždycky
všihny viny všichni všichni
zmřel zmrzl zemřel zemřel
sejdime šmejdíme sejdeme sejdeme

Table 9: Where simple autocorrect mode is better

that go beyond simple spell checking, even in a
broader sense of some degree of contextual sensi-
tivity. The figures in Table 10, otherwise similar
to Table 8, should be interpreted accordingly.

mode c’cted wrong prec recall F-msr
cor 1151 687 0.60 0.45 0.51
dia 1176 640 0.54 0.42 0.47
c+d 1315 745 0.57 0.49 0.53

Table 10: Comparison with corrections at L2,
where annotators agreed on the total of 1519
wrong forms

The two-stage annotation scheme seems to be
well-suited to test the grammar-checking capabili-
ties of Korektor on real-word errors. However, the
annotation was not designed to test a spell checker,
let alone any advanced features of this kind. Still
it is possible to find cases of successful corrections
of missed agreement or case government. The
mode combining diacritics remover, assigner and
proofreader is the best scenario.

Even though its suggestions may not quite
match the two annotation levels, the results sup-
port the idea to integrate Korektor into the learner
corpus annotation workflow, either as suggestions
to the annotator or as a solution to obtain large-
scale annotation at the cost of a higher error rate.

5 Discussion

The results achieved for spelling correction accu-
racy are not as good as the results reported in Brill
and Moore (2000), where the accuracy around
95% for the first suggestion was reported. How-
ever, those results were achieved for English and
are thus not directly comparable. The rich mor-
phology of Czech is expected to lower the re-
sults somewhat. For the Chyby corpus, signifi-
cantly lower performance (73% on the first sug-

gestion) was probably caused by the heavy us-
age of technical terminology, such as names of
software products and their declination variants.
The fact that Korektor clearly outperformed Mi-
crosoft Word 2007 spell checker with the gram-
mar checker included is the best direct indicator
of system qualities available.

6 Conclusion and Future Work

A context-sensitive method of spell-checking and
diacritics completion was designed and imple-
mented. The resulting spell checker is freely avail-
able and ready to use.

Regarding the spell-checking task, emphasis
was put on the ability of the system to recognize
real-word spelling errors and also on the ability to
suggest the most probable corrections for spelling
errors.

In the spell-checking evaluation, Korektor
achieved much better performance than the MS
Word 2007 spell checker. However, the perfor-
mance of the spell checker shows significant de-
pendence on the domain of the testing data.

Using the implementation of the spell checker,
diacritics completion was implemented. The accu-
racy of diacritics completion was about 98% with
training and testing data coming from different do-
mains. Such performance is already acceptable for
many tasks. Some of the authors have been us-
ing the diacritics completion for emails typed in
ASCII in daily use.

To the best of our knowledge both the spell
checker and diacritics completion service of Ko-
rektor are the most efficient writing aids for Czech
currently available.

Korektor was already used during the anotation
of CzeSL corpus, which resulted in a significant
improvement of annotation efficiency.

In the future, we would like to adapt Korek-
tor to other languages by estimating the language-
specific language and error models. A possible
improvement of the spell-checking capabilities of
Korektor could be achieved by utilization of more
fine-grained error models as proposed by Brill and
Moore (2000). In standard Czech it has a lim-
ited value, but the experiments on a learner corpus
show it could still be useful for non-native speak-
ers. For languages with less straightforward or-
thography it is even more valuable.

References

Eric Brill and Robert C. Moore. 2000. An improved
error model for noisy channel spelling correction.
In ACL ’00: Proceedings of the 38th Annual Meet-
ing on Association for Computational Linguistics,
pages 286–293, Morristown, NJ, USA. Association
for Computational Linguistics.

K. Church and W. Gale. 1991. Probability scoring
for spelling correction. Statistics and Computing,
1(7):93–103.

Ken Church, Redmond Wa, Ted Hart, and Jianfeng
Gao. 2007. Compressing trigram language models
with golomb coding. InIn Proceedings of EMNLP-
CoNLL 2007, Prague, Czech Republic.

Edward Fredkin. 1960. Trie memory.Commun. ACM,
3:490–499, September.

Andrew R. Golding and Dan Roth. 1999. A winnow-
based approach to context-sensitive spelling
correction. Machine Learning, 34:107–130.
10.1023/A:1007545901558.

Jirka Hana, Alexandr Rosen, Svatava Škodová, and
Barbora Štindlová. 2010. Error-tagged learner cor-
pus of Czech. InProceedings of the Fourth Linguis-
tic Annotation Workshop, Uppsala, Sweden, July.
Association for Computational Linguistics.

R. Kneser and H. Ney. 1995. Improved backing-off for
M-gram language modeling. InAcoustics, Speech,
and Signal Processing, 1995. ICASSP-95., 1995 In-
ternational Conference on, volume 1, pages 181–
184 vol.1.

Michal Marek and Pavel Pecina. 2007. Web
page cleaning with conditional random fields. In
CleanEval. submitted to CleanEval 2007.

Eric Mays, Fred J. Damerau, and Robert L. Mercer.
1991. Context based spelling correction.Informa-
tion Processing & Management, 27(5):517 – 522.

Karel Pala, Pavel Rychlý, and Pavel Smrž. 2003. Text
corpus with errors. InTEXT, SPEECH AND DI-
ALOGUE, volume 2807/2003 ofLecture Notes in
Computer Science, pages 90–97. Springer.

Stuart Russell and Peter Norvig. 2003.Artificial Intel-
ligence: A Modern Approach. Prentice-Hall, Engle-
wood Cliffs, NJ, 2nd edition edition.

Drahomíra Spoustová, Jan Hajič, Jan Votrubec, Pavel
Krbec, and Pavel Kv̌etoň. 2007. The best of two
worlds: Cooperation of statistical and rule-based
taggers for Czech. InProceedings of the Work-
shop on Balto-Slavonic Natural Language Process-
ing 2007, pages 67–74, Praha, Czechia. Association
for Computational Linguistics.

A. J. Viterbi. 1967. Error bounds for convolutional
codes and an asymptotically optimal decoding algo-
rithm. IEEE Transactions on Information Theory,
13:260–269.

E. W. D. Whittaker and B. Raj. 2001. Quantization-
based language model compression. InEuropean
Conference on Speech Communication and Technol-
ogy.

