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Why this tutorial?

* Alot of progress in robust, wide-coverage NLP
with expressive grammars in the last 10 years
— Expressive grammars and machine learning go together
— Expressive grammars are needed for semantics
— Expressive grammars are being used in real applications

But:
» Research is limited to small number of groups

» Each group works within their own formalism
— What are the commonalities and differences?
— How can others get started?
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Overview

» Part 1: Introduction to expressive grammars
— Why expressive grammars?
— Tree-Adjoining Grammar
— Combinatory Categorial Grammar
— Lexical-Functional Grammar
— Head-Driven Phrase Structure Grammar

 Part 2: NLP with expressive grammars
— Grammar extraction: obtaining the grammar
— Wide-coverage parsing: using the grammar
— Other applications: using the grammar

. WHY EXPRESSIVE GRAMMARS?
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Why grammar?

Meaning
representation

Barsing > Logical form:
Grammar saw(Mary,John)

< : ./ Pred-arg structure:
Generation

Surface
string
Mary saw John

PRED saw

AGENT Mary
PATIENT John
Dependency graph:

saw

M. amm

Grammar formalisms

— Formalisms provide a language in which linguistic
theories can be expressed and implemented

— Formalisms define elementary objects
(trees, strings, feature structures) and recursive
operations which generate
complex objects from simple objects.

— Formalisms may impose constraints
(e.g. on the kinds of dependencies they can
capture)
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How do grammar formalisms differ?

Formalisms define different representations
— Tree-adjoining Grammar (TAG):
Fragments of phrase-structure trees
— Lexical-functional Grammar (LFG): A

Annotated phrase-structure trees (c-structure)
linked to feature structures (f-structure)

— Combinatory Categorial Grammar (CCG):

Syntactic categories paired with meaning
representations

— Head-Driven Phrase Structure Grammar(HPSG):
Complex feature structures (Attribute-value matrices)

How do grammar formalisms differ?

Weak generative capacity:

— What languages (sets of strings)
can be defined?
«a"b™ is regular, a"b" is contexi-free

— Expressive grammars can
represent more languages

aaaabbbb
aaabbb

aabb

context-free

Strong generative capacity:
— What structures can be defined?

— Expressive grammars can
represent more structures

noun noun noun verb verb

verb

mildly context-sensitive
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Different types of dependencies

Head-Argument: e.g. verb-subject

— Arguments are subcategorized for

— Arguments have to be realized, but only once
Head-Adjunct: e.g. noun-adj., verb-adverb

— Adjuncts are not subcategorized for

— There can be an arbitrary number of adjuncts
Coordination:

— Conjuncts may be standard constituents
John and Mary; live or die

— Conjuncts may be nonstandard constituents
((John will) and (Mary may want)) to go

Contexi-free grammars

* CFGs capture only nested dependencies
— The dependency graph is a tree
— The dependencies do not cross

10
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Beyond CFGs:
Nonprojective dependencies

Dependencies: tree with crossing branches

Arise in the following constructions

» (Non-local) scrambling (free word order languages)
Die Pizza hat Klaus versprochen zu bringen

» Extraposition (The guy is coming who is wearing a hat)
- Topicalization (Cheeseburgers, | thought he likes)

1

Beyond CFGs:
Nonlocal dependencies

— Dependencies form a DAG
(a node may have multiple incoming edges)

— Avrise in the following constructions:
» Control (He has promised me to go), raising (He seems to go)
« Wh-movement (the man who you saw yesterday is here again),

» Non-constituent coordination
(right-node raising, gapping, argument-cluster coordination)

12




Unbounded non-local dependencies

Extraction:
- Wh-movement:
the articles which (you believed he saw that...) | filed
— Tough-movement:
the articles are gasy to file
— Parasitic gaps:
the articles that | filed without reading

Non-standard coordination:
— Right-node raising:
[{Mary ordered] and [John ate]] the tapas.
— Argument cluster coordination:
Mary ordered [[tapas for herself] and {wine for John]].
— Sentential gapping:
[{Mary ordered tapas] and [John beer]j.
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Commonalities and differences:

Lexicalization

No lexicalization: (CFG)
— The lexicon contains little syntactic information (e.g. just POS-tags)
— Recursion is entirely defined by language-specific grammar rules

Weak lexicalization: (LFG)

— The lexicon (and lexical rules) specify some language-specific information
(e.g. subcategorization, semantics, control, binding theory, passivization)

— Recursion is defined by language-specific grammar rules
(but lexical information may constrain which rules can be used in which context)

Strong lexicalization: (TAG, CCG, HPSG)

— The lexicon (and lexical rules) specifies all language-specific information
(e.g. word order, subcategorization, semantics, control, binding theory)

— The lexicon pairs words with complex elementary objects
These objects may have an extended domain of locality
(i.e. capture structure beyond a single CFG ruie})

— Recursion is defined by completely universal operations
14




f Il. TREE-ADJOINING GRAMMAR

Tree-Adjoining Grammar

TAG is a tree-rewriting formalism:
— TAG's elementary objects are trees (not strings)
— TAG's operations (substitution, adjunction) work on trees.

— TAG requires a linguistic theory which specifies the shape
of these elementary trees.

TAG is mildly context-sensitive:
— can capture Dutch crossing dependencies
— but is still efficiently parseable

16




TAG: the machinery

Elementary trees:
— Initial trees: combine via substitution
— Auxiliary trees: combine via adjunction

Derived trees:
— The output of substitution and adjunction

Derivation trees:
— A record of the derivation process

A small TAG lexicon

ol: g
&
NP XH
g R
VlBZ NP

eats

B1:
o2: % VP\ a3:

NP F|“3 VP* NP

John always tapas
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LA

A TAG derivation: arguments

Derived tree al: S
N P/ \VP
il
a / \
VIBZ NP

eats |

Supstiution
o2: VP
’ 7N
N "B VP
John a Iways

A TAG derivation: arguments

Derived tree

ol

N

o2 a3

ol:

o
II\IP

o
John V|BZ

eats

S

VP
R

l\llP

tapas

ITB

p1:
VP

always

VP*
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A TAG derivation: adjuncts

Derived tree 5 8 b S
y il
al lI\IP /VP\
/\ , John VBZ NP
a2 i s | |
eats \ tapas
s ction )_
Wb
FllB VP*
always

21

A TAG derivation: adjuncts

Derived tree al: .5
1 NE N
o VP
#
SN John HB VP
a2 Bl o3 RN

always V|I32 I\IIP

eats  tapas

22
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Nonlocal dependencies in TAG

/NP
i NP SBAR
Use different P N
elementary trees WHNP S\
NONE- NP VP
0 VBZ NP
deniles -NOTI\IE—
*PE LD
Use obligatory
adjunction N
MD VP*

can
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TSG, TIG, and TAG

e Tree Substitution Grammar:
— only substitution o
* Tree Insertion Grammar:

— only substitution
and sister adjunction

» Tree Adjoning Grammar:

— substitution, sister adjunction
and wrapping adjunction

24




Extensions and variants of TAG

Multicomponent TAG
— Elementary trees can be sets of trees
— More expressive than standard TAG

Spinal TAG
— Elementary trees have only a spine

— Leaves subcategorization and
argument/adjunct distinction underspecified

25

lll. COMBINATORY CATEGORIAL
GRAMMAR
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Properties of CCG

« CCG rules are type-driven, not structure-driven
— Types = functions
_ Transitive verbs and VPs are indistinguishable
« CCG's syntax-semantics interface is transparent
— Lexicon pairs syntactic categories with interpretations
— Every syntactic rule has a semantic counterpart
_ CCG rules are monotonic (no movement/traces)
« CCG has a flexible constituent structure
— Simple, unified treatment of extraction and coordination

« CCG is mildly context-sensitive

27

CCG: the machinery

Syntactic categories:

specify subcategorization; define word order
Semantic interpretations:

specify logical forms (pred.-arg. structure)
Combinatory rules:

specify how constituents can combine.
Derivations:

spell out process of combining constituents.

28




CCG categories

Simple (atomic) categories: NP, S, PP

Complex categories (functions):
Return a result when combined with an argument

VP, intransitive verb S\NP
Transitive verb (S\NP)/NP
Adverb (S\NP)\(S\NP)
Prepositions ((S\NP)\(S\NP))/NP |
(NP\NP)/NP
PP/NP

28

Function application

Forward application (>):
(S\NP)/NP NP =_ S\NP
eats tapas eats tapas

Backward application (<):
NP S\NP =>. S
John eats tapas John eats tapas

Used in all variants of categorial grammar

30




A (C)CG derivation

John eats tapas
NP (S\NP)/NP NP
S\NP____
S <

31

CCG: semantics

— Every syntactic category and rule
has a semantic interpretation

— Semantic interpretations are functions
of the same arity as the syntactic category

— Semantics often written as A-expressions
John eats tapas
NP : John' (S\NP)/NP : Az.\y.eats'zy NP : tapas’
S\NP : \y.eats’tapas’y g

S : eats'tapas’ John'

32




Function composition

Harmonic forward composition (>B):

XY Y/Z =.n X1z
Ax.f(x) Av.g() Az.1(g(2))
Harmonic backward composition (<B):
Y\Z X\Y =8 X\Y
Ay.g(y) Ax.f(x) Az.1(g(z))
Forward crossing composition (>B):
X1Y YNZ = X\Z
Ax.1(x) Ay-g(y) Az.1(g(2))
Backward crossing composition (<B*):
Y/ X\Y D D
Ay.g(y) Ax.f(x) Az.1(g(2))
33
Type-raising

Forward typeraising (>T):

X =5 T/(T\X)

a Af.f(a)

Backward typeraising (<T):
X = T\(T/X)
a }\f.f(a)

34




The CCG lexicon

Pairs words with their syntactic categories
(and semantic interpretation):

eats (S\NP)/NP AxAy.eats’xy
S\NP Ax.eats’x

The main bottleneck for wide-coverage
CCG parsing

The CCG lexicon:
bounded dependencies

Bounded dependencies are captured in the lexicon

through coindexation in the syntactic category
and copied variables in the semantic interpretation

Auxiliaries
may: (S\NP)/(S\NP;): AP2x.may '(x,P(x))

Subject control

promise: ((S\NPi)/(S\NPi))/NP:zlyiP)x.promise (%))

Object control

P(x))

persuade: ((S\NP)/(S\N P,))/NP;:2yAPx.promise (e, P(x)

36




Another CCG derivation

John eats tapas
NP (S\NP)/NP NP
T
S/(S\NP)
>B
S/NP
5 >

 Function composition and type-raising create
“spurious ambiguity”.

* Normal form derivations use composition and
type-raising when only necessary

37

Non-local dependencices:
Type-raising and composition

coffee that | drink
NP (NP\NP)/(S[dcl]/NP) S/(S\NP) (S[dcI]\NP)/NP
S[dcl/NP
NP\NP
NP

/ like but  you hate coffee
S/(S\NP) (S[dcI]\NP)/ l'il; conj S/(S\NP) (S[dcl]\NP)/ lig NP
S[dcl]/NP S[dcl]/NP

S[dcl]/NP
S[dcl]

o>

38




IV. LEXICAL FUNCTIONAL GRAMMAR

Lexical-Functional Grammar

« LFGis constraint-based (Bresnan & Kaplan ‘81, Bresnan ‘01, Dalrymple '01)

- Two (basic) levels of representation:

— C-structure:

* Represents surface grammatical configurations:
constituency, word order

- Represented as annotated CFG trees
— F-structure:

« Represents abstract syntactic functions,
morphological + semantic information
_ SUBJ(ject), OBJ(ect), OBL(ique), PRED(icate), COMP(lement), ADJ(unct)...
_ TENSE, ASPECT, NUM(ber), PERS(on), ...
- E-structure = basic predicate-argument structure, dependency
representation, logical form, ... (van Genabith and Crouch, '96;'97)

» Represented as attribute-value matrices (AVMs; DAGSs)

40




Lexical-Functional Grammar LFG

s
1=l [ PRED ‘SEE((TsUBI)(ToBI)Y
- PRED ‘JOHN’
} _ SUBJ fa:| NUM sG
(T sm?:f)— if PERS 3
b oB1 Iy PRED ‘MARY’
NUM SG

. (T oBa)=| T [ TENSE PAST |

[ PRED ‘*FEIC(({SUBI)(TOBRI))’
PRED ‘SEAN’
SUBI  fi:| NUM sG
PERS 3
PRED ‘MALIRE’

%'ﬁ: NUM  SG

|l TENSE PAST

4

Lexical-Functional Grammar LFG

PRED Annan
SUBJ NUM  sg

/\ PERS 3
:> PRED  sign(]suUBJ,]OBJ)

S
NP VP
TENSE past

s
NNP G Np @ PRED deal
| | P 0 NUM  sg
Annan sipnel DT NN OBI] PERS 3
I l .
the  deal SEEC [DEJ [PRED t'h“‘ﬂ
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| Lexical-Functional Grammar LFG

S ~ S —~ NP VP
: NP VP NP g DT NN
;_ 1 NP — NNP
: NNP \/\\p NNP  —  Annan
| Py NN — deal

‘A 1nnat higi‘] ‘f“:l I) ,J.-= N N \*; - 5 ig,'ll@('l

DT o the

the deal

43
|
LFG Grammar Rules and Lexical
Entries
_____________________________________ s e e
i : | NNP  — Annan !
i LS = NP P . ; [PRED=Annan |
i ; [suBI=] =] : : INUM=sg ;
! ! [PERS=3 ;
VP — v NP b .
: ]:[ |‘()]‘;,g:l . 1 NN — deal :
l | P | FRED=deal ;
I NP — D1 NN 1 INUN=sg a
\ ! [SPEC DET=| =| : ! |PEns=3 i
1 . 1 1
| L NP — NNP LV —4 signed {
‘ | = ¥ | PRED=sign{|sUBI.|OBI) |
; ' | TENSE=pasl |
Il | i |
| SRS o' SR (e !
l i
L e i i i o e S M g e T i
|
44




LFG Parse Tree (with Equations/
Constraints)

5

NP VP
[stpa=| =]
NI!EP
=l
\ V NP
Alllan
= OlLl=
[PRED=Annan | | | =
INUN=sg signed
[Prns=3 |PrED=sign(]sUB1. | OB.) DT NN
[ TENSE=past |sPEC DET=] =1
the deal

JPRED=1he | PrRED=deal
INUNM=sg
PERS=3

45

LFG Constraint Resolution (1/3)

(S
I:NP VP
Isti=| =]
Q:i\fl.\TIJ
=l
=\1u|1-m iy NP
[PRED=Annan ITI fona=|
[ NUM=sg signed
[PERS=3 |PRED=sign(|sUBJ.| ORI G:DT 7:NN
[ TENSE=pasl |SPEC DET=| [=|
|
the (’('ul

|rRED=the JrrED=deal
[NUM=sg
1PERS=3
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LFG Constraint Resolution (2/3)

s

[:NP 3VP
O:suena=l (=3

Q:NJ;\’F'

[=2
| x5 ~NP
Annan gl_‘,\ | %(‘)F;\}I— 5
2:PRED=A1mnan ) T Py
2NUN==5E sirned

DeppEns—3re Ha . | T T:NN
ZrErs=3rd o n g =sign (4sUna o) G:11 :NN
4:TENSE=pasl SiSPEC DET=0 S
e deal

G:PrRED=the T:rrRED=deal
TINUN =52
T:rERSs=3rd
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LFG Constraint Resolution (3/3)

( 2 PRED=Annan, 2:NUM=sg. 2:rERrs=3rd. =2, ®isupi=I1.

St 1:i‘HlED:sign(-l:Sl‘a_B.],J:UB.I). L TENSE=past. 3=1.

' ﬁ G:PRED=the. 5:SPEC DET=06. T:PRED=deal. T:NUM=sg. T:PERS=23rd.
L 5=7. 3:0B1=5. (=3
{0=3,5=7,1=2,3=4} = {34} - 0. 7—5and 2 =1
([ O:suBi=1. 1:PRED=Aunnan. :NUM=sg. L:PERs=3rd.
F-Str = A S 0:PRED=sign(0:5UB1.0:0B1), OrIENSE=past

' 0:0BJ=h. H:PRED=deal, H:NUM=sg. H:PERS=3rd.
5:5PEC DET=06. G:PRED=Lhe

\
PRED  Annan

SUBJT m NUM 5§

PERS 3
PRED s_ign( |sUBJ. | OBJ)
Izl TENSE past A, =,V
[MRED deal
NUN 58

0Bl PERS 3 & PGE

SPEC [[)E-’J' [PRED tho]l
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LFG Subcategorisation &
Long Distance Dependencies

Subcategorisation:
— Semantic forms (subcat frames): sign<SUBJ, OBJ>
— Completeness:

all GFs in semantic form present at local f-structure

— Coherence:
only GFs in semantic form present at local f-structure

Long Distance Dependencies (LDDs):

— Resolved at f-structure with Functional Uncertainty
Equations (regular expressions specifying paths in f-
structure).

LFG LDDs: Complement Relative

NP
-.\‘I'/\m\u Penn-I|
_—
i charge
WS- Y _
PRED charge
which /\ NUAI sy
N Ve PENS 3
it ]/\
Mr. Coleman 37 ~Np SPrRe [[bl‘.! [['IHZII ”]]
||I‘I!il’h -_\'U[.\'l':- r
AT 'RED pro
|l irnoronst which

NP
. SURL NI'AL 114
RELAOGD
Pris 3
ll
arge

‘\ 5 .
— SEAT LFG PRED deny{([sURL]ORY)
el PAN] pres
WINP g O
\\'lllil']l /\
NP AYE

A, Coleminn \'Ili?.
|
leni

|\ denles

prRED Mr. Coleman




I"ItED

RELNOD

LFG LDDs: Complement Relative
Clause

/\

SHAR
{rRELAKOD=]

i (h arge /\
WHNP

| roricniL= l
lconMP*oRI=]

I
chorge -‘ which \[

e G PR pro m
TOPICHEL .
¢ rroory which

COMDP PRED  deny (ST o) I('()E\II’* UB.]=J

IMAST pres

\_ 011 E

.-Q:-
the defence
cln uu( ] '/\,
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mrb defence N v
RIMER T A
s s Alr. Coleman VIZ
PRED claim{|sUng, Jeonp) (IIJI.M
PAST piast
= rurn - Mr, Coleman
e Functional Uncertainty Equations

V. HEAD-DRIVEN PHRASE STRUCTURE
GRAMMAR




Head-Driven Phrase Structure

Grammar

» HPSG (Pollard and Sag 1994, Sag et al. 2003) is
a unification-/constraint-based theory of grammar

* HPSG is a lexicalized grammar formalism

« HPSG aims to explain generic regularities that underlie phrase
structures, lexicons, and semantics, as well as language-
specific/-independent constraints

+ Syntactic/semantic constraints are uniformly denoted by signs,
which are represented with feature structures

» Two components of HPSG
— Lexical entries represent word-specific constraints (corresponding fo
elementary objects)

— Principles express generic grammatical regularities (corresponding
to grammatical operations)

53

[wign

PHON string

[ synser

[locai

CAT

SYNSEM LOCAL

NONLOCAL [

LDTRS dirs -

LS

Sign

calegory

HEAD head

valence
SPR list
VAL | suBd sist

COMPS fist

LCONT contenr __

REL Zist

nomlocal
QUE list
SLASH fist

[MOD %'J

AN

* Sign is a formal representation of combinations of
phonological forms, syntactic and semantic constraints

phonological form f

syntactic/semantic
consfraints

local constraints l

syntactic category [

syntactic head |

modifying constraints |

subcategorization frames

semantic representations

|

non-local dependencies

|

daughter structures |
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Lexical entries express word-specific constraints
:fegrl Cloey
N We use simplified
e [:?Bﬁﬁ’m] notations in this tutorial
‘v‘ﬂi’u?;;;;“"u:
i - 5 PHON “loves”
[ ﬂ“éﬁ%"%ﬂ“ HEAD verb
y SUR T oz CLTI. “a‘[giﬁz} ] ! SUBJ <NPE-| =
el o COMPS/'<NPz >
s wl || oo [ ] CONT fbve([] 2] )
aliaid el
;‘7_:‘.2'5",.:"6!;"
M5 { || oear [ S5 | e ‘saplnni)‘ )
o [gg}iﬁpgﬂ HEAD noun
] cetn[fgg,’éb]] SUBJ <>
cont F;::['“%E}] COMPS <3
" rzcu}ar’;iﬂs‘:)ARG: CONT
riCNLQ’:[ggf{‘)) ]
SLASH ()
55

Lexical entries

Lexical entries represent word-specific constraints

— Difference in lexical entry
= difference in grammatical characteristics

[ PHON “think”

Subcategorization frames HEAD verb
e.g. sentential complement SUBJ <NPf >
COMPS <S@>

| CONT shink([1],[2])

[ PHON “loved”

Syntactic alternation HEAD verb
- SUBJ <NP [ >
.g. passive
€.g.p COMPS <PPyy [@>
| CONT love(,) |

56




Principles

Principles describe generic regularities of grammar
Do not correspond to construction rules
* Head Feature Principle
The value of HEAD must be percolated from the head daughter

[HEAD ] — - [HEAD ] -

head daughter
* Valence Principle

Subcats not consumed are percolated to the mother

* Immediate Dominance (ID) Principle

A mother and her immediate daughters must satisfy one of immediate
dominance schemas

Many other principles: percolation of NONLOCAL features, semantics
construction, etc.

57

Schemas

Schemas correspond to construction rules
in CFGs and other grammar formalisms

— For subject-head constructions (ex. “John runs”)
[suBj<>] —» [suBJ<[1]>]

— For head-complement constructions (ex. “loves Mary”)
[comps @] —> [comps <[ |2l>]

— For filler-head constructions (ex. “what he bought”)
[sLasH @] —> [ sLasH <[|2]> ]

58




Example: HPSG parsing

. Lexical entries determine syntactic/semantic
constraints of words

Lexical entries

E HEAD noun HEAD verb HEAD noun | |

|| SUBJ <= SUBJ <HEAD noun> SUBJ <> |

. LCOMPS <> COMPS <HEAD noun> COMPS <>
John saw Mary

"

59

Example: HPSG parsing

Principles determine generic constraints of

grammar HEAD
SUBJ
COMPS

| HEAD
Unification | suBJ
C= _comps <[3]|]>] (
\:HEAD noam} l:HEAD verb :l l:HEAD Houn
SUBJ <> ‘| SUBJ <HEAD noun> SUBJ <>
COMPS <> | COMPS <HEAD noun>] COMPS <>

John saw Mary

|
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Example: HPSG parsing

Principle application produces phrasal signs

HEAD verb
SUBJ <HEAD noun>

COMPS <>
HEAD noun HEAD verb HEAD noun
SUBJ <> SUBJ <HEAD noun> SUBJ <>
COMPS <> COMPS <HEAD noun> COMPS <>
John saw Mary

61

Example: HPSG parsing

Recursive applications of principles produce
syntactic/semantic structures of sentences

HEAD verd
SUBJ <>

COMPS <>

HEAD verb
SUBJ <HEAD noun>
COMPS <>

HEAD wnoun HEAD verb HEAD oun

SUBJ <> SUBJ <HEAD noun> SUBJ <>

COMPS <> COMPS <HEAD noun> COMPS <>
John saw Mary

|\ 62
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—
Example: Control verbs
| persuaded him to quit the trip.
— He quit the trip (object control)
| promised him o quit the trip.
— | quit the trip (subject control)
PHON “persuade” PHON *“promise”
HEAD verb HEAD verb
SUBJ <NP@> SUBJ <NPp >
COMPS <NPgm , VPR3 > COMPS <NPg , VRa >
CONT persuade([1] 2],[31 (2} -- ) CONT promise{[1],[2}: BIEL---)
persuade(l, he, quit(he, trip)) promise(l, he, quit(], trip))
63
]
Nonlocal dependencies
{HEAD noun }
SUBJ <>
COMPS <>
SPR=<>
/\
° NONLOCAL HEAD det glEJgE gcﬁm
features [?;‘éﬁpé g j SouPs, <> ’
(SLASH’ REL’ etC.) thle ’H_EADm verh
explain long-distance [2[3%%{,@;} {g‘gﬁfpg g %
dependencies SPR <[1> REL<F2>
— WH movements prices FEQJD erb
. . . COMPS <>
— Topicalization SIASH <>
_ Relative clauses [gggg notn ] HEAD verh
etC. B COMPS <> gBA\‘APS<< 2'>
HEAD verb HEAD verd
W <[> U <[3>
¢ [%%BMJPS[%@J @Eﬁﬁsﬁi
were charged
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HPSG resources

« Enju: an English HPSG grammar extracted from Penn
Treebank

* Hand-crafted grammars
— LinGO ERG (English)
— JaCY (Japanese)
— GG (German)
— Alpino (Dutch)
— Grammars for other languages are underdevelopment in the
DELPH-IN community

« Grammar Matrix
— A framework for the rapid start-up of new grammars

— The framework provides principles/structures shared among
all grammars

65
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VI. INDUCING EXPRESSIVE GRAMMARS
FROM CORPORA

Obtaining wide-coverage grammars

. Extracting grammars from treebanks:
-Leverage the effort that went into original annotation

-Requires a formalism (and treebank-)specific algorithm
to translate existing treebank into desired target

| « Handwritten grammars: -

| «Require substantial manual effort

| . Difficult to reuse grammars across formalisms

| -Examples: XLE (LFG), ERG (HPSG), XTAG (TAG)....

68




Grammar extraction

Source i Target
Treebank Transiation Treebank

5 a2

Target Grammar
Source Grammar g

TAG, CCG,
(Treebank manual) |EiPSG, LFG)
Treebanks...

... contain arbitrary text:

— arbitrarily long sentences:
* parentheticals, speech repairs, complex coordinations...
— arbitrarily short sentences:
*fragments, headlines,...
... contain arbitrary descriptions:
— arbitarily complex descriptions:
* coindexation, null elements, secondary edges...

— arbitarily simplified/shallow descriptions:
* compound nouns, fragments, argument-adjunct distinction
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Grammar formalisms...

....provide analyses for well-studied constructions

— It may be unclear how to analyze less well-studied
constructions

.. may provide constrained expressivity

— Mildly context-sensitive formalisms (TAG/CCG)
cannot capture arbitary (e.g. anaphoric) dependencies

.. may require complete analyses

— Lexicalized formalisms need lexical entries for every word

71

Research questions

* Are the treebank descriptions sufficient to
obtain the desired ‘deep’ analyses?

« Can the grammar formalism account for the
descriptions provided in the treebank?
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TREEBANKS

What do we need to extract
grammars from treebanks?

Source treebank needs to have
an explicit representation of:

— heads
core
- argu_ments } dependencies
— modifiers
— conjuncts may use different
. representation
— nonlocal dependencies [ _, speEial reatent

Extraction algorithms need to distinguish
each dependency type
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What do treebanks capture?

Local dependencies and phrase structure
— Head-argument, head-modifier, simple coordination

— Core of any annotation;
but argument/modifier distinction not always clear

Nonprojective dependencies
— Extraposition, scrambling

— Captured directly in dependency banks;
with null elements in treebanks

Nonlocal dependencies
— Raising, control; wh-extraction, topicalization;
non-standard coordination

— Require other means of representations
(traces, secondary edges) — often ideosyncratic

— Annotation sometimes missing
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Challenges for grammar extraction

Differences in analysis
— may require systematic changes to treebank

Treebank uses underspecified analyses

— may require additional annotation or
heuristics

Noise in treebank analysis
— may require ad-hoc changes 1o treebank
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- TB contains dependencies the grammar can’t capture.

- TB doesn't contain enough information to define a single
target analysis.

- TB makes distinctions which the grammar
does not care about (inconsistencies?)

77

Penn Treebank

— Phrase-structure treebank
requires head-finding and arg/adjunct distinction heuristics

— Non-local dependencies:
hull elements, traces, and coindexation
*-null elements: passive, PRO
*T*-traces: wh-movement, tough movement
*RNR*-traces: right-node raising
Other null elements:
*EXP*; expletive,
*ICH* (“insert constituent here”): extraposition
*U* (units): $ 500 *U*
*PPA* (permanent predictable ambiguity)
=-coindexation: argument cluster coordination and gapping
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Wh-extraction
in the Penn Treebank

SBAR

~
/\

WHNP-1
|
/ \

which NP- SBJ
the magazme VBZ VP
1 / \
has VP NP

7N 1
VBN NP -NONE-
|

1 |
offered advertisers "T"-1

Coindexed traces indicate non-local
dependencies

79
TiGer/NeGra
—XE—
|Aci Ml  [NK]
_/‘S_""\

HD]
an einemt Hochsten, dem sich fraglos ] wirerwerfen habe
in a Highest  whom  the sl human refl without submit have

uestions
APPR ART NN §, PRELS ART  ADJA M PRF ADJD PTKZU  VVVIN VAFIN

— Explicit annotation of heads, arguments,
modifiers, conjuncts

— Non-local dependencies: discontinuous
constituents (or secondary edges)
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GRAMMAR EXTRACTION

General procedure

1. Cleanup/preprocessing (optional)

a) Eliminate noise and inconsistencies

b) Change unwanted analyses; use heuristics to add information
2. Parse treebank

a) ldentify local dependencies: heads, args, modifiers, conjuncts

b) Identify non-local dependencies: extraction, non-stand. coordination.
3. Translate treebank

a) Basic case: local dependencies
each type may require different treatment

b) Special cases: non-local dependencies
each type may require different treatment

4. Postprocessing (optional)
a) clean-up

b) translate syntactic analysis into semantics

B2
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Evaluating extracted
grammars or lexicons

. Grammar/lexicon size
— How many entries does each word have?
_ How many kinds of entries (e.g. different categories)?
— Depends on heuristics used and on granularity of analysis

» Coverage and convergence
— How many lexical entries required to parse unsee

are missing?
. Distribution of types of lexical entries
— How many different kinds of rare categories?
 Quality?

— Inspection, comparison with manual grammar

n data
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TAG extraction: head + arguments

S
/ \
NP-SBJ VP
I _— \
NNP VBZ VP
I I / E\
NL is ADVPI-MNR VBG NP
7N\
officially making DlT N|N
the  offer
S
/ \
NP VP
7\
V?G NP
making
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TAG extraction: adjuncts

S
e \
NP-SBJ VP
Nllup vaz/ \vp
1 — |
NL is  ADVP-MNR VI?G NP
| /
officially ~ making DET NIN
the offer
NP VP VP
/ N\ / N\ N
T NP VI?Z VP ADVPI-MNR VP

D
I

the is officially
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i EXTRACTING CCGs

The basic translation algorithm

VP S[dcl NP

// \\ [ C]\

BOVE Va4 Hg PR-TME (S\NP)/(S\NP) S[dcl]\NP

just opened its doors in July jUSf s[ dcl]\NP (S\NP)\(S\NP)

(S[dcl]\NP)/NP NP in Ju!y
1 I
opened its doors
1. Identify heads, arguments, adjuncts
2. Binarize tree

3. Read off CCG categories
4. Get dependency structure
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CCGbank derivations

NP\
Np/ NP\NP
_'——'_'_-'_'_'-_'_"—_ \
A (NP\NP)/{SIdcl]\NP) S[dcl]\NP
funds ._.—-—-—"""_'—'___ \
tlnt (S[dcl\NP)/(S[pss]\NP) S[pss]\NP
o T - ~N
(SIdel]\NP) /{S|pss]\NP) (S[del]\NP)/(5pss]\NP)[conj] S[pss]\NP (S\NP)\(S\NP)
| " ~ ]
are conj (S[dcl\NP)/(5[pss]\NP) listed
| s Ty in...London
or (S\NP)/(5\NP) (S[dcl\NP) /(S[pss|\NP)
| -~ ~
soon (S[del]\NP)/{S(b]\NP) (S[b]\NP)/{S[pss|\NP)
| |

wilt be

that (INPANP)/(S[dcINNP)) funds are, will
are ((S[AIN\NP)/(S[pss\NP)) funds  listed

soon ((S\NP)/(S\NP)) will

will ((S[dcINNP)/(S[b]\NP)) funds be

be ((S[b\NP)/(S[pss\NP)) listed

listed (S[pss\NP) funds

in (((S\NP)\(S\NP))/NP) listed York, London
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Wh-extraction in CCGbank

NP\NP
(NP\NP)/(S[dcl]/NP) S[dcl]/NP
which S/(S\NP) S[dcl]\NP)/NP
NP (STACII\NP)/ S[ptI\NP) (S[pt]\NP)lNP
the magaz:ne has ((S[pt]\NP)/NP)/NP NP

offered advertrsers

* The trace is cut out, but the dependency is captured.

* The relative pronoun subcategorizes for an incomplete
Sentence.

* This derivation requires type-raising and composition.

90

;




Right-node raising

S[dcl]\NP
(S[del]\NP)/ (S[pss|\NP) S[pss]\NP
= \NF VAN
(S[dcl]\NP)/(S[pss]\NP)  (S[dcI]\NP)/(S[pss]\NP)[conj] A
I 7 ~ listed in London
are conj (S[dcl]\NP)/(S[pss]\NP)

| P

or soon will be

are  ((S[AANNP)/(S[pss\NP))funds listed

soon ((S\NP)/(S\NP)) will
will ((S[dcIN\NP)/(S[bI\NP)) funds be
be ((S[bI\NP)/(S[pss]\NP)) listed
listed (S[pss]\NP) funds
in (((S\NP)\(S\NP))/NP) listed York, London
91
CCGbank

» Coverage of the translation algorithm:
99.44% of all sentences in the Treebank
(main problem: sentential gapping)

» The lexicon (sec.02-21):
— 74,669 entries for 44,210 word types

— 1286 lexical category types
(439 appear once, 556 appear 5 times or more)

e The grammar (sec. 02-21):
— 3262 rule instantiations (1146 appear once)
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The most ambiguous words

Word | #Cats. | Freq. || Word | #Cats. | Freq.
as 130 [ 4237 | of 59 | 22782
15 109 6893 || that b5 7951
to 98 | 22056 || -LRB- h 1140
than 90 1600 || not 50 1288
in 79 | 15085 || are 48 3662
- 67 2001 || with 47 4214
s 67 9249 || so 47 620
for 66 7912 || if 47 808
at ' 63 4313 || on 46 5112
was 61 3875 || from 46 4437

Many frequent words have a lot of categories
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Frequency distribution of categories

Lexical categories

Category frequency f #Cats.
100,000 < /< 220,000 2

10,000 < f< 100,000 13
1,000 <f< 10,000 49
100 <f< 1,000 108
10 <f< 100 253
5 £ f« 10 131
2 Hf« 5 291
0 <f< 1 440
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Boxer: from CCG to DRT

Translates CCG derivations (output of C&C parser)

to Discourse Representation Theory

The events of April through June damaged the respect and
confidence which most Americans previously had for the leaders

of China .
x0 x1 x2 %3 x4 x5 X6 x7 %8
timex(x0) = XYLXX06XX ? |have(x7) )

event(xl)

timex(x2) = XXXXO04XX

through(x2, x0)
of (x1, x2)

v

respect(x3)

confidence(x3)

named (x4, china,
leader(x5)
of (x5, x4)

loc)

agent (x7, x6)

patient (x7, x3)

named(x6, americans, nam)
previously (x7)

event (x7)

for(x7, x5)

damage (x8)

event (x8)

agent (x8, xl1)

patient(x8, =x3) 9

Reanalyzing the Penn Treebank

* Propbank and Nombank add information to

the original Penn Treebank

» Vadas & Curran (ACL'08) add internal
structure to compound nouns in Penn Treebank

e Honnibal, Curran & Bos (ACL'10)
integrate this information into CCGbank
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Extracting a CCG from Tiger

— We translate 92.4% of all trees into CCG
(more work required...)
—>2500 lexical categories

S[vlast] \NP[dat] —_
S/(S\NP) (S[vlast\NP)\NP[dat]
der...lVIensch (S[z]\NP) \NP[datT (S-[-\;Est]\NP)\(S[z]\N P)
(S\NP)/(S\NP) (S[z]\NP)\NP[dat] hiakss
sith  (S\NP)/(S\NP) (S[z]\NP) \NP[dat]
a8 (S[z]\NP)/l(S[b/]\NP) (SIb]\NP)\NP[dat]

1
zZu unterwerfen

97

EXTRACTING LFGS




| Treebank Annotation: what we have
S-TPC-1 ;/ T\.P VP
NP VP DT I\\' VBGZ) S
o ~ |
™~ | 1 | l
NNP VBZ NP the headline said *T*-1
‘ ]
TN signs NN
treél}'

99

Treebank Annotation: what we want

5
s:rmp
| (jTopic)=| (1suB))= )
’ NP VP DT NN VBD S
i ('|5U1|31)=-I ;l\ (]DPETDETFl '1=|l 1=l (lcomp)=F1
NNP VBZ NP the headline said *T*-1
1=] =] (loB]}=| |PRED=the |PRED=lheadlinc ~ |PRED=say
| | | [NUM=sg [TENSE=past
U.N. signs NN | PERS=3
|PRED=U.N.  |PRED=sign |=]
INUM=sg  |TENSE=prcs |
| PERS=3 treaty
| PRED=treaty
INUM=sg
TPERS=3
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Treebank Annotation: what we want

[PRED sign 7
TENSE pres
[ PRED U.N.
SUBJ NUM sg
TR PERS 3
" PRED treaty
OB NUM sg }
L PERS 3 |
PRED say B
TENSE past
[SPEC [ DET the ]
sUB| PRED headline ]
NUM sg
| PERS 3

| coMPp i
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Treebank Annotation: what we have

)
/\\\
/ \ T
/ B e
S-TPC-1 : NP VP
NP VP DT NN VBD S
NNP VBZ NP the headline said i |
I .! |
U.N. signs NN

J

treaty
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Treebank Annotation: what we have

A

S-TPCH. | VP
(ITOPIC)=| (1susj)=| 1=I
1= l /\ /\
NP VP DT NN VBD S
(1sus))=| /|=1\ (|DPEC:DET)=] 1=l 1= (fcomp)=r]
NNP VBZ NP the headline said T |
1=| =] (JjoB)=| |PRED=the 1PRED=headline | PRED=say
| ] | |NUM=5g | TENSE=past
U.N. signs NN [PERS=3
|PRED=U.N.  |PRED=sign
INUM=s5g | TENSE=pres |
| PERS=3 treaty
{PRED=treaty
INUM=sg
| PERS=3
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Treebank Annotation: what we want

~ rPRED sign T W
TENSE pres
[ PRED U.N.
SUBJ NUM s
Tor PERS Sg
" PRED treaty
OB] NUM sg
L | PERS 3 } |
PRED say
TENSE past
SPEC [ DET the ]
SUBJ PRED l_leadlme
NUM sg
| PERS 3
| COMP i
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Treebank Annotation: Penn-ll & LFG

Head-Lexicalisation [Magerman,1994]
! ™\
Left-Right Context Annotation Principles Sulkali2e.
I i B
Proto
F-Structures Coordination Annotation Principles Bapr
1 > F-Structures
Catch—AII‘and Clean-Up < | Gy e {W&?ée{ |
'
Traces J
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Treebank Annotation: Traces

Long Distance Dependencies:
* Topicalisation

* Questions

* Wh- and wh-less relative clauses

* Passivisation

* Control constructions

* ICH (interpret constituent here)

* RNR (right node raising)

Translate Penn-Il traces and coindexation into corresponding
reentrancy in f-structure

106
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Treebank Annotation: Control & Wh-Rel. LDD

/\H“m

&

the energy and mmbilions

-hl'l'(’ [lll{‘l‘ [I‘Ili’[l 1|u-]]

COORDZFOHN and

[ T1wED CHETEY
NUA sp
rERs
PRED  ambition
xra opl

| [ERs 38

CUUED

[Tovcse, [Tiat 4
PRED  refurmer]
SUIR svss o pl o
PERS
PRED want
RELAOD TENSE jaiiet
SUnS |z| i
NCOMI ToANE 4
S PHED teward
I ]

TRELAGD=

TTONI IlEl |

I
ll'
= ~e-siufz] R
. i 1sUk= |
thot I=r2 /\
\Jﬁ \ IIIJ
\nl\ll‘
reloriners \\m:l--nl
NE-SI \ P
1sl={
_l ol
il /\
-NONE- TO \]

* TTUANE = ¢
[T |
o \‘“/\\‘p

(Inl— !
reawvarnd |
-NONE-
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Treebank Annotation: Right Node Raising

b

NI-S13
|sUid=]

|
PRE
=1

she
Ve
DI JCOURD
TSURJ= ST

VB PR-CLR
I=I loBL=]

1 /\
applied 18 NE

|=] JoBI=]

J 1<{ET]
or

|
-NOXNI

l
MNRE]

v

VP NTH |

LSHeODRD [=F]
SURI= ST /\
P NN NN
VD NI [=lapix =]
[=! Told=|

| | :EI b= pity
waoll |

-NOXNE-

cHX'Ih
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Treebank Annotation: Right Node Raising

I'RED pro .
ST 2
Skl [i'lmx_l-'nn:\[ hl"l

( F‘%l']{.l ]
I'RED apply
TENSE  past
rromar  for
BI.
¥ OB
(st ]
COORD { [rrED win \
TENSE  past apply<subj,obl:for>
PRED pay = . .
NUM s win<subj,obj>
PERS 3
11
o PRED bonis m
ADIN NUM  sg
PEIts 3
VL 1)

COORDZFORM  nnd

109

Other Treebanks
and Dependency Banks

LFG grammar acquisition for parsing and generation
— Spanish: Cast3LB (Grzegorz Chrupala)
— German: TiGer Treebank (Ines Rehbein)
—~ French: P7T and MFT  (Natalie Schiuter)
— Chinese: CTB6 (Yuging Guo)
— Arabic: ATB (Jafa A'Raheb, Lamia Tounsi, Mohammed Attia, Hann
Bchara)

~ Japanese: Kyoto Text Corpus (Massanori Oya)

* Typologically very different languages

* Morpologically rich/poor

* Semi-free word order — strongly configurational languages
* Drop: pro, anything ...

\ 110
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and Dependency B

As a consequence:
- Very different LFG f-str annotation algorithms

» Original f-str annotation algorithm for English
much morphology) and Penn-I| (“X-bar, traces .

. More recent f-str annotation algorithms:
- Use richer treebank labels
 “Translate” to f-structures

« More machine learning

Other Treebanks

anks

(configurational , not

)
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Chinese
(y R mA Al i | ta
pot want keok-for train bave petontinl DE new writer
¢ Popli) dowt waut o bool: For and train the nesw writers %o have potential.”
w
l NPHRS ve
| e
.plu. ARVE ve reeen 1 1 {STBL XCOMP}
& er |TRER S
1 \'1\- 1e-c 1T ARIEE ADJ-TYPE neg
(RS i sUBT FRED ‘pra
sl N 3 Ve FROTVPE [ers
- 2
NONE- FRED Uil {5UBI OB
“pito*
‘ RO, e i sumt [1]
1 1) E
I \‘lr .-qr.;:.m W MPLORLL [PRED '/ hi(suslOBY
by -NONE- 1
bk 4 ! : Bl m
| SRNTL-2 tratn FRED s
co .
| or AL up | xcour o= L {[“ED 3 ]}
1
I NN PRED +4§ (SUBL ORI}
‘ WHNP-L op | | oBl PRED pro’ El
| i { TOPICREL s
~NONE- w ”u'mw wliter ADIUNCT.REL PROTYPE el
aidpe sun B
[ r-‘&.]u VP pi { asl [preo it 1
-NONE-  vig Np \_ \_ -
COURDFORM
o1 e
have |
. ool
Figure 310 Exnmple of NLDs rupresented in CTH, including droppel subiject
(*pro*), control subiject { tPRO*), WH-trsce in relativisation (*T*). and right node 112
raising in coovdination (CPRNIT




EXTRACTING HPSG

Translating Penn Treebank into
HPSG

 Convert Penn-style phrase structure trees into
HPSG-style structures
— Converting tree structures

« Small clauses, passives, NP structures, auxiliary/control
verbs, LDDs, etc.

— Mapping into HPSG-style representations

* Head/argument/maodifier distinction, schema name
assignment

* Mapping into HPSG signs
— Applying HPSG principles/schemas
* Fully specified HPSG structures are obtained

..




— ________
S
T tree stru.cture 7 o
N|P ﬂ\/P\ conversion |P /VP\
d ag
NL i ADVP P - NL VP e
head/\ mod head, arg
officially making )IQ is officially making >K
the offer the offer
)
1Mapp|ng into
[E‘ESE’ g ] Principle/schema HPSG-style
EOMPS <> application [gg%ﬁp Sf representation
E[HEAD nmm] [HEAD 'T_L‘;]
SUBJ <= SUBJ <
COMPS <> COMPS <> HEAD nonn I: HEAD verh
[E‘éﬁpé g >] SUBJ <[3-
HEAD verd HEAD e |
NL suBt <(3= 2| suBJ <[1>
COMRS < COMES <> [HEAD verh] HSQ? <‘" J>
head-cotip
HEAD vert | [HEAD vert || HEAD verd HEAD noun
= [Egﬁ,ﬂ:g i ] [é%ﬁpg e ][?;Bﬁfpg S5 ] [2[ 2onPs < >] [HEAD vert] [HEAD atv] [HEAD vers] [EEQE e ]
moo | 3 COMPS <>
| | | A | | |
is  officially making  the offer is  officially making the offer
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Tree structure conversion

« Coordination, quotation, insertion, and apposition

« Small clauses, “than” phrases, quantifier phrases,
complementizers, etc.

o Diiambiguation of non-/pre-terminal symbols (TO,
etc.

« HEAD features (CASE, INV, VFORM, etc.)
e Noun phrase structures

» Auxiliary/control verbs

» Subject extraction

 Long distance dependencies

- Relative clauses, reduced relatives
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Passive

» “be + VBN" constructions are assigned
“VFORM passive”

NP-SBJ-2 VP
™
the details have n't VP
been VP I:VFORIVI pa.s'.s‘ive]
worked/VBN N|P P|TT

*-2 out

"7

Auxiliary/control verbs

* Reentrancies are annotated for representing
shared arguments

NP1 ‘ E1]NP1 VP[SUBJ <21
/\
they VP they VP VP[SUBJ <EZ>:|
N /\ N ™ 3

1l
did nt have did n‘t have /VP\@BJ <|2]]>:|

NF/BK 0 VRlsue ]

*-1 10 VP choose NP
/-\

choo up\ this particular moment

this particular moment

118
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LDDs: Object relative

- SLASH represents moved arguments

« REL represents relative-antecedent relations

[REL<> ]
NPLSLASH <>

/\ >
NPD e i el

[ stash <>

the energy and ambitions W NP-3
D][REL <2-
hat NFI-2 VP stasH <>

reformers wanted [SLASH <E‘ﬂ>]

NP VP[stast <d>]

|

%2 to VP[stas <]
reward N‘P

*T*-3 19

Mapping into HPSG-style
representations

« Convert pre-/non—terminal symbols
into HPSG-style categories

HEAD noun
woo o[RS

HEAD verb
VBD VFORM finite

TENSE past

. Assign schema names to internal nodes

NP VP NP VP
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Category mapping
& schema name assignhment
« Example: “NL is officially making the offer”

HEAD verb
SUBJ <>

COMPS <>
Ncr—head
HEAD »noun
HEAD verb
/S\ ‘ SUBJ 1o [ ]
head COMPS <> SuBJ <[>
e e
" arg
NL VP P NL HEAD verb
HEAD vert
head/\ mod head, arg [ ver :l UBJ <[>
opiahy i NE
HEAD noun
[HEAD verb:l [HEAD ndv:l EHEAD '.'erb] SUBJ <>
the offer | | | coy\s\ <>
is officially making the offer
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Principle/schema application
HEAD verb
|:SUBJ <> }
COMPS <>
! HEAD snoun -
| e (4580 21
COMPS <>
| P
]
! HEAD verd
| HEAD verh NL [HEAD vers] [SUBJ <D]>]
: SUBJ <> [fead-mod _|—~__
3 COMPS <> HEAD noun |
[HEAD verb] [HEAD adv] [HEAD verb] | SUBJ <>
HEAD 5 HEAD verb COMPS < >
D][gg?ﬁjpél”" } [SUBJ éﬁ]:—} | | |
. 5 COMES == is officially making the offer
NI HEAD verd HEAD verb
SUBJ <= @ suBJ <>
COMPS <[ COMP
HEAD verd er
o 3585 A ] [ o) [4500 2t ] o 560 22
COMPS <[Z- COMPS <[4 COMPS <>
- is officially making the offer
J \ 122




Complicated example

HEAD noun
SUBJ <>
COMPS <>
/SPRE;'\
HEAD notn
SEEI
<>
COMPS <> SPR [l
the HEAD "noun HEAD verb
NP o suBJ <> SUBJ <>
head/\ arg gg}g‘g%}:> %EEAES <>
e SR |
head rices HEAD verb
the prices WﬁNP 1 S 3 SUBJ <>
/\ - COMPS <>
0 NPY VP )LASH\
‘ /\ arg HEAD noun HEAD verb
we were™e VP B[SUBJ <> ] suBJ <[3>
COMPS <> COMPS <>
head s SLA <[>
charged *-2 *T*-1 \
HEAD verd HEAD verb
we SUBJ <Ef§>ml @ g%?j,pgm>
< >
COMPg. =A% SLASl—l <>
were charged
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Extracting lexical entries

HEAD verh
sugl <=
COMPS <>

Collect

HEAD noun HEAD verh
1:1[ b ] { qﬂ,]
%%%IJPS <> g‘é?ﬁlps <> Ieaf nOdES
P HEAD verb
NI HEAD verh o] HEAD g making: | SUBJ_< HEAD noun >
%%?\Flj §<> SLCJ)Er:',i' P COMPS < HEAD nourn =
D[HEAD verb ] HEAD verb [HEAD i ]m[ HEAD Lm)lm] Generali e &
%%%AJPE% %%%JPE%‘ %oﬁpggéo COMPS <> z
l | \ PAN assign predicate

is  officially making the offer argument structures

HEAD verb

HEAD noun
Sug <[CONT gl ]’

HEAD notn
COMPS <| CONT [ 1’

CONT make(d1]2))

make:




Generalization

* Remove unnecessary feature values

» Convert lexical entries of inflected words into

lexical entries of lexemes using inverse lexical
rules

— Derivational rules: Ex. passive rule

HEAD verb P S I HEAD verb
SUBJ <HEAD: noun> ‘ SUBJ <MEAD: noun>
COMPS <HEAD: prep by> COMPS <HEAD: noun>

— Inflectional rules: Ex. past-tense rule

verh
rerb
HEAD | VFORM ﬁnfzeH q [HEAD [“3’ H
{ lTENSE past VFORM base

i 125
\

| Predicate argument structures

* Create mappings from syntactic arguments
into semantic arguments

Ex. lexical entry for “make”’

HEAD verb

CAT|HEAD nozm:[
UBJ < "
CAT | yaL ® [QONT——E

COMPS < ,:CATIHEAD noun j{>

CONT [Z
CONT make([d, @¢------- ”
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Results

erage: 96% of sentences from

. Conversion coV
e converted

Penn Treebank 02-21 wer

» Lexicon:
_ Lexical entries are extracted for 45,236 word

types
_ 1136 lexical entry types for base forms, 2289

types for expanded forms
ge: >99%

. Parsing covera

RAMMARS

WITH EXPRESSIVE G

( —VIL. WIDE-COVERAGE PARSING




Wide-coverage parsing with expressive
grammars

* Wide-coverage grammars are necessary for wide-
coverage parsing < solved!

» Wide-coverage grammars are a halfway to wide-
coverage parsing

— All grammatical structures do not necessarily
correspond to “natural interpretation”

— High parsing accuracy = accurate selection of the
“correct” one from possible grammatical structures

Time flies like an arrow. T J
P
|' WWWW pr />>\ Which corresponds to

grammar | ™ ' the correct interpretation?
Se—

LFG/CCG/HPSG parsing = CFG parsing

* LFG/CCG/HPSG parsing is essentially phrase
structure parsing

* Conventional methods for CFG parsing can be
applied
— Chart parsing

— Statistical models for disambiguation (PCFG, machine
learning, etc.)

— Search techniques (Viterbi, beam search, etc.)

.
il (S\NP)/ g
John V|BZ l\llP S\NP
eats tapas S
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Added benefits

. Ser_nantic; structures are output as a result of
parsing
- Expressive grammars restrict search space

— Ungrammatical structures are excluded by hard
constraints

. Expressive grammars provide additional information
for statistical disambiguation

_ Lexical categories, lexical entries — supertagging

_ Predicate argument structures — semantic features
— f-structures

Available wide-coverage parsers and
basic architectures

« CCG

— C&C parser. supertagging + discriminative model
for phrase structure parsing

_ StatCCG: generative parser
« HPSG
— Enju parser: supertagging + discriminative model
for phrase structure parsing
- LFG

_ DCU-LFG: pipeline architecture, integrated
architecture




PARSING WITH CCG/HPSG

Basic architecture

* Supertagging + phrase structure parsing
Looks like chart parsing

#CE
* Terminal symbol: |exical categogcy, lexical entry #24
* Production rule: combinatory rulé, prmmple/schema 7

* TAG, CCG and HPSG are lexicalized

* Lexical categories/entries encode rich grammatical
constraints

* Terminal symbol selection (=supertagging) {
plays a crucial role ¢
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Supertagging

s Supertag = lexical category, lexical entry
« Supertagging = assign supertags to each word
without parsing

- n i P [
HEAD noun L, !
suBJ <> |-

HEAD noun L, ai
SuUBJ <>
COMPS <>

- 5 iH l
HEAD verb | EI!
SUBJ <NP> b
COMPS <NP> l

'] like

P: large

ey
b 8

Supertagging is “almost parsing”

. \When a supertag is determined, the structure that will
be constructed is almost determined

. Supertagging greatly reduces the search space

—> boosts parsing speed and accuracy

S When gold supertags aré
_ given, random choice from a

arse forest achieves >95%

accuracy

HEAD verb
SUBJ <NP>
COMPS <NP>




Machine learning for supertagging

» Supertagging is a sequence labeling task
— Machine learning methods can be applied
— Log-linear models, perceptron, etc.

* Simple machine learning works: in many cases,
supertags can be determined by local contexts

Likely to be an
object-control verb

...man forced his friend to...
... NN VBD PRPS NN TO..
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Effect of supertagging

* Experiments on HPSG parsing
» Evaluation metrics:

— Labeled accuracy of predicate argument relations

— Average parsing time per sentence
el rEOﬂ"i

LP(%) | LR(%) | F1(%) Avg. time
Chart parsing w/o supertagging | 84.96 84.25 84.60 674ms/sent.
Chart parsing w/ supertagging 87.35 86.29 86.81 183ms/sent.
Supertagging + CFG filtering 86.90 86.71 86.80 19ms/sent.
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Probabilistic grammars

Generative models: P(w, T)
— Joint distribution over all strings w and trees T
_ Use Bayes Rule: argmaxr P(T |w) e argmaXxy P(w,T)
_ Advantage: easy {0 estimate (rel. frequencies)
_ Disadvantages: difficult to capture complex features

Discriminative models: P(T\w)
_ Use loglinear models to define distributions P(T\w)

— Advantage: can use complex features
— Disadvantage: more difficult to train
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Generative models for
expressive grammars

TAGICCG:
— Very similar to (lexicalized) probabilistic CFGs

_ Lexical entries are treated as atomic units.
Since coindexation/reentrancies are properties of lexical elements
(TAG: trees with traces; CCG: categories with coindexation), this

does not cause any problems for generative models

LFG/HPSG:

7 — Reentrancies in feature structures cannot be modeled
6 with generative models (Abney 2000)

— LFG: can use any (P)CFG parser for c-structure alone
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Discriminative models

Probability p(T) of parse tree T given sentence w

parameter vector
(feature weights)

p(T | w) x exp(X-£(T))

feature vector

Non-probabilistic models can also been applied
— SVM, averaged perceptron, etc.
— Sufficient for choosing the best parse

i

P a7y Ve :

t\Coo! boysl'l-' A[PVP ran \

------ \never il 4
w """"" Category

Design of features

* Feature engineering is essential for high accuracy

* Features should capture syntactic/semantic
characteristics of structures

— Syntactic categories, lexical heads, POSs, constituent
size, distance, etc.
5
D i A
s NP >~ lLINP ‘\\

<subJ-head, 2, VP, ran, VBD, V_intrans-past, 2, NP, boys, NNS, N_plural, 2>
word span

wrttpeed  fleqgl weitels
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Example: syntactic features

Features for the Head-Modifier construction for

“saqw a girl” and “with a telescope”
<head_mo difier_schema,distance = 3, >
P

HEAD verb f= leftspan= 3, VP, saw, VBD,transitive_verb,
SUB) < i rightspan = 3, PP, with,

HEAD veih
SUBJ <NP>
COMPS <>

N, vp_modifyng_pre

COMPS <>

HEAD prep
HEAD verb MOD <NP>
SUB.I <NP> SUBJ <>
}MPSO\ COMPS <>
HEAD fioun HEAD verb HEAD noun HEAD prep HEAD notn
SUB) <> SUB) <NP> SUB) <> MOD <NP> SUBY <>
COMPS <> COMPS <NP> COMPS <> suBl <> COMPS <>
COMPS <>
he saw a girl with  atelescope

Example: semantic features

Features for the predicate argument relation

between “he” and “saw’”’

ARG1 he
- \ label = ARG, distance = 1
saw f ={ saw, VBD, transitive_verb,
he, PRP, pronoun

ARG2 girl




Long distance dependencies

TAG, CCG, HPSG:
The lexicon captures long-distance dependencies

- TAG

, HPSG: LDDs require different lexical entries

= Supertagging is crucial

|

g

f)/yo/u:ljke‘_...
HEAD verb } [HEAD verb [

Which lexical entry J

should be assigned?
SUBJ <NP> SUBJ <NP> ho 8

COMPS < > J
SLASH <NP>

COMPS <NP>
SLASH <>
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Basic architectures

LFG has two levels of representation
— c-structure
— f-structure

- Pipeline architecture:
_ Strategy: c-structure first, then f-structure
_ Advantage: existing PCFG parsers can be used

o Integrated architecture:
_ Strategy: compute both structures at the same time

_ Advantage: c-/f-structures may effectively constrain
ungrammatical structures during parsing
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LFG Parsing Architectures

Pipeline: Integrated:

Attonutic
I Struelhine
Annelation

Autoniatic
F-suueture
Annntation

Annotited Trees

F- Structufes




Parsing: LFG and LDD Resolution

« Penn-ll tree: traces and co-indexation for LDDs

“U.N. signs treaty, the paper said”

S

=2 NP VP suBJ [PRED U.N.]
/\ e ™ PN TOPIC |PRED sign
b VP DT NN VBD 5 OBJ [PRED treaty]

SPEC the

: N | I , ‘ SUBJ [PRED headlinc]
NNP VBZ NP the paper said -NONE- |prep  say
| | come ]

U.N. signs NN ]

Proper f-structure

treaty 149

Parsing: LFG and LDD Resolution

* “PCFG”" Parse tree without traces:
“U.N. signs treaty, the paper said”

S
S//';E\VP [ [suBs [PRED U.N.] 77

/\ P 1 TOPIC |PRED sign

NP VP DT NN VBD |0BJ  [PRED treaty]

\ YL | l | SUBJ SPEC the ]
NNP  VBZ NP the paper <aid |PRED headline

l l I |PRED  say |
U.N. signs NN
treaty Proto f-structure
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Parsing: LFG and LDD Re
[T

Require:
_ functional uncertainty
— subcat frames

equations

« How? From f-str annotated Penn-Il ...

Previous Example:

~ FEQPIC= 1COMP*COMP (search along 2

— say<SUBJ,COMP>

gspec the
SUBJ .
PrRED headline

|PRED 88y

-

i suBJ [PRED UN.] 1] [
TOPIC |PRED sign TOPIC
]

oBJ] [PRED treaty

SUBJ

PRED
2 I_COMP

—

. Previous Example:

- say<SUBJ,COMP>

TOPIC

PRED

L

_ 4TOPIC = ' COMP*COMP

SUBJ [PRED U.N.]
PRED sign
oBJ [PRED treaty |

sPEC the
SUBJ

prED headline
say

I

solution
% 1]

SE T
K

o sH
rpRs 3
o

path of 0 or more comps)

PRED sign

oBJ [PRED treaty |
speEc the

L’RED headline}

say

-

SUBJ [PRED U.N.]} l
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—

Parsing: LFG and LDD Resolution

]
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l EFFICIENCY AND ACCURACY

Efficiency and accuracy

Is parsing with expressive grammars slow?
— It was very slow more than ten years ago

— Various technigues have been proposed
(details omitted)

 Supertagging
* Beam search techniques: iterative, global thresholding
« CFG filtering

— Latest systems are faster than shallow parsers

Which parser is more accurate?
— How to compare parsing accuracy of different parsers?
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Efficiency comparison

Parser Framework Speed
MST parser dependency 4.5 sent/sec
Sagae’s parser dependency | 21.6 sent/sec
Berkeley parser CFG 4.7 sent/sec
Charniak’s parser CFG 2.2 sent/sec
Charniak’s parser + CEG 1.9 sent/sec
reranker
Enju parser HPSG 2.6 sent/sec
Fast Enju parser HPSG 18.9 sent/sec
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ccal @ fdwt/ cap

Accuracy evaluation

- Across-framework accuracy comparison
J PS Parser

e

Dep. Parser

I @
HPSG Parser Common pqrse }_ EY E/Z\
: CCG Parser representa_tlon N :(/
lliieclpaisar Conversion Evaluate accuracy

- Task-oriented evaluation (mentioned later)
| PS Parser

—

Dep. Parser —l @
l:_ﬂPSG Parser NLP task }‘ Y \‘Q’g\
CCG Parser (IE, etc.) QY :(/

Features Observe accuracy
improvements

LFG Parser
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Across-framework accuracy comparison

* How do treebank-based constraint grammars/
parsers compare to deep hand-crafted grammars/
parsers like XLE and RASP? L7

* How do treebank-based CCG, LFG and HPSG
compare with each other?

(Joint work with Aoife Cahil and Grzegorz Chrupala)
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Parsers and data

* Parsers

— Treebank-based LFG, CCG, HPSG parsers
— RASP (version 2) (Briscoe & Carroll 2006)
— XLE (Riezler et al. 2002, Kaplan et al. 2004)

* Data

—PARC 700 Dependency Bank gold standard (King et al. 2003),
Penn-Il Section 23-based

- DepBank (Briscoe & Carroll 2006) reannotated version of
PARC 700 with CBS 500-style GRs

-~ CBS 500 Dependency Bank gold standard (Carroll, Briscoe
and Sanfillippo 1999), Susanne-based
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Cross Comparison

ATMUNCT S8

IR A NOCOME
but stock _.-keep fall
) ) TENSE o i
- S L s STATAIYPLE J
,'\Iil'.[}ﬂ]ui'. N1TA 'l |' 'l’ii_l Wi
A A} \| S 4 »
positive pl  past declarative

Fig. 7. PARCTO0 dependencies for But stocks kept falling. Non-PRED dependencies are

indicated by dashed adges.

CONJ

NOSUEL \ XCOMID
> 7 RN

But stocks kept falling

Fig. 8. DepBank dependencies for But stocks kept falling
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Cross Comparison

« Lots of pain points:
_ Different tokenisation Penn-ll and PARC700 and DepBank
_ Punctuation changed in DepBank => strings =/= Penn-l|
— Different labels
_ Different analyses
_ Different granularity
— Lots of fun

» Mapping ....
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Treebank-Based LFG, CCG and HPSG

Dependency Evaluation Results against DepBank:

Micro-average Macro-average
P R F P R F
LFG 84.29 B0.11 82.15| 69.26 62.45 65.68

HPSG-Enju | 83.57 81.73 82.64 | 77.87 71.10 74.33 @-—'—
CCG-C&C | B2.44 B1.28 81.86 | 65.61 63.28 64.43
RASP-(v2) | 77.66 7498 76.29 | 61.12 63.77 62.94

Table 1: Results of LFG parsing resources against DepBank

Micro-avernge Macro-average

P R F P R F
LFG 86.06 8396 8500 | 7142 6462 67.85
HPSG-Enju | 87.49 86.79 87.14 | 81.19 75.70 78.35
CCG-C&C | B6.B6 8275 B84.76 | 71.73 65.85 68.67

Table 2: Upper Bound results of deep parsing resources against DepBank

cply Thee$
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Comparison against XLE and RASP

Labelled dependency f-scores
(Burke et al. 2004, Cahill et al. 2008):

PARC 700
-80.55% XLE

«82.73% DCU-LFG  (+2.18%)
«84.00% DCU-LFG now (+3.45%)
CBS 500

-76.57% RASP

-80.23% DCU-LFG  (+3.66%)

Results statistically significant at = 95% level
(Noreen 1989)
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VIil. APPLICATIONS

Applications of expressive
grammars

« Parsing with expressive grammars is robust,
accurate, ready to be applied to real-world problems

« Expressive grammars have shown competitive or
state-of-the-art performance in several NLP tasks

_ Sentence realization (generation)
. Grammars are necessary to bridge semantic representation to its
sentence realization

— Information extraction
« Predicate argument relations are used like dependencies, with
deeper information
— Machine translation

- Expressive syntactic/semantic structures are effectively
combined with statistical MT
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GENERATION

Sentence Realization

Sentence realization (generation):
Semantic representation — sentence

syntactic structure

sentence passing
Mary saw John NlP yg see(Mary, John)
generation " spring has come | semantic
L representation

PHON “saw”
HEAD verb

grammar | gypj<np>
COMPS <NP>
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Chart generation

« Chart parsing — chart generation

» Many parsing techniques can be applied to generation

— Supertagging (hypertagging)
— Beam search

0-3 {0,1,2,3}
02 | 1-3 {0,1,2} | {0,1,3} | {0,2,3} | {1,2,3}
0-1 | 1-2 | 23 0,13 | {0,2} | {0,3} | {1,2} | {13} | {2,3}
0 1 2 3 {0} {1} {2} {3}
He bought a Dbook. he(x)  buy(e) a(y) book(z)
0 1 2 3 . paﬁt(e) , .
chart parsing chart generation
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LFG Generation

Two architectures for generation from f-structures:

» Chart & Rule-Based Generation: use f-structure
annotated CFG rules from Integrated Parsing Architecture
+ chart generator + probabilities conditioned on input f-
structure (!)

« Dependency-Based Generation: linearize dependencies
directly by learning n-gram models over dependencies
(NOT strings)!
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LFG Generation: Chart & F-Sir. Annotated Rule-Based

Probability Model

argmax o P( Tree| F-Str)

P(Tree|F-Str):= [] P(X — YI|X. Feats) (1)
X — Y in Tree
o(X) = Feats
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LFG Generation
S
1=] -
ﬂ
.\'ll ARl
(1 sindi= | ]
/
NNP BELIEVE(([srna)( | coxe)y’
T=1 PRED PR
| ST far | New L.
They helieve Prps 0
(1 rein) = ‘pro’ (| puzp) = ‘believe’ | =1 fe rEED donx’
(1 star) = v (7 TENSE) = prm S far ]~ s
{1 PEES) = 3 NP VP roMp fa PELS ;
(] stan=| =| ——— ] : RESIGN{(Tsrna))
! / AT
NNP 34 [T TENSE  PRESEXT
=1 7=
| |
John resigned

(7 peEp) = “John' (] PEED) = ‘resign’
(] N1ra) = s (7 1ENSE) = pasl
(1 ree=)y = i
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LEG Generation: Dependency-Based

S

i

NP VP
|
PRP VBP PP

L
We pelhieve TN NP

i T

in NP
o~
DT NN IN

I
the low of

PP
NP
l
NNS
l

averages

(a.) c-structure

(¢.) linearised grammat

Figure 1: C-

PRED

and f-structures for the sentence e be

prEp  ‘believe’
TENSE  pres

PEORM ‘Il

OBL
PFORM
SPEC

LFG Generation: Dependency-Based

P(GF

iﬂl )

P(GF,..G

nt

I P(GFL|GFi a1
k=1

PRED ‘IO’
sUBJ fa| PERS 1
nua gl

preD  law’

pers 3
NUM 52

SPEC f;.[ns-r f(;[w.sn '\he'n

proaM ‘o’
pRED ‘avernge’
AD) i
08l fzlpErs 3
xune pl J

(b.) t-structure

OBJ
PRED

Fin)

of averages

7

ADI

PFORM OBJ

ical functions / bilexical dependencies

Heve in the law of averages.

]

—
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1

(1)

B

Model N-grams Cond.
basic (P) SPEC PRED ADJ
gt (P9) SPEC PRED ADJ OBL
pred (P?) SPEC PRED ADJ ‘law’
lex (P SPEC PRED[‘law’] ADJ[ of’]
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Results

Table G. Cross system compurison of results for English WS.J section 23

System

Coverage Complete ExMatch BLEU  SS5A

Callaway (2003)
Langkilde (2002)"

Nakanishi et al. (2005)"

Cahill and van Genabith (2006)
Hogan et al, (2007)

Rajkumar et al. (2009)

White and Rajkumar (2009)

Guo et al. (2008)

This article LFG
This article CoNLL

O8.7% 49.0% 0.5884
82.7% 28.2%% 0.757 0.696
90.75% 0.7733
08.05% 80.40% 0.6651  0.6808
09.96% 0.6882  0.7002

04.8% 85.04% 33.74% 08173
097.06% 83.88%, 40.45%  0.8506

100% 100% 19.83% 0.7440 0.7534
100% 100% 31.54% 0LBOGS  0.7871
100% 100% 47.76% 08820 0.859G

* The results are for the “permute, no dir” type experiment in Langkilde (2002). where
the inputs are most comparable to our fstruectures in regard to the level of specification.
¥ The results are for sentences with o length limitation of 20 words.
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Relation extraction

« Extracting relations expressed in texts
— Protein-protein interactions
— Gene-disease associations
— Network of biological reactions (BioNLP’09 shared task)

- Train a machine learning classifier using parser output as

features

— Classification problem
oD

MOD___ SUBJ e J Jop 0Bl -

- . . . - 0 w -
XPG protein interacts with multiple subunit of TFIIH and with CSB protein.

0oBJ

XPG TFlHs | Postve

<XPG, CSB> l
<TFlIH, CSB>

negative
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BioNLP’09 shared task

- Finding biological events from abstracts
— Protein annotations are given

.. In this study we hypothesized that the phosphorylation of TRAF2 inhibits
binding to the (40 cytoplasmic domain. ...

~=E—

negative_regulation
CAUSE:
phosphorylation
THEME: TRAFZ
THEME:
binding
THEME: TRAFZ
THEMEZ2: CD40
SITEZ2: cytoplasmic domain s




Event extraction system

.. the phosphorylation of 7747 inhibits binding to the /0 cytoplasmic domain. ...
l Trigger word detection
~~
.. the phosphorylation of 7/ inhibits binding to the ' cytoplasmic domain, ...
Phasphorylation Negative Binding Entity
regulation
I_ Event edge detection | E-——-—) theme E
______ =~_ i - =» cause |
b7 -~ /—\V b ———
... the phosphorylation of :/i\F" jnhibits binding to the i cytoplasmic domain. ...
... the phosphorylation of 77~  inhibits bindini to the (/0 cytoplasmic domain, ...
Binding 177
Event extraction system
* Event extraction by three modules
— Trigger word detection
— Event edge detection
— Complex event detection
* Each module is a linear SVM with features on
parsing output
— Shortest dependency paths
— Dependent/argument words
* Evaluate contributions from parsers and parse
representation formats
178




Parsers & Formats

« Dependency parser . Parse representation
— Gdep formats
. Phrase structure parsers — ~ CoNLL-X
_ Stanford parser _ Stanford dependency
(SD)

_ McClosky’s self-trained
parser (MC)

» Deep parser
— C&C parser
— Enju

_ Predicate Argument
Structure (PAS)
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| e

—
Parse representation formats

ROOT vMOD PMOD COORD

el

root NFAT/AP-1 complex formed only with P and P2

« CoNLL-X \ A 4 n_/ _J

NMOD  VMOD PMOD CONJ

nn re pobj cc

¥~ N

- Stanford NFAT/AP-1 complex formed only with P and P2

(SD) S N A

nsubj dep conj
noun_argl prep_argl2 prep_argl2

 Enju PAS ! N ¥ - “arg:

NFAT/AP-1 complex formed only with P and P2

verb_argl adj_argl coord_argl2 coord_argl2

1 argl argl arg2
arg g B rg 180




Format conversion

Syntactic
Tree + PAS

CoNLL-X

C&C Tools

SD

Enju2PTB

Pl Stanford tools
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Results

» Parsers always help
* GDep, MC, C&C, and Enju are comparable
* Best results are close to results with gold parses

SD CoNLL PAS
No parse 51.05
GDep 55.70
Stanford 55.02 53.66
MC 55.60 56.01
C&C 56.09
Enju 55.48 55.74 56.57
Gold parse 56.34 56.09 57.94
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« Combination helps in most cases

— Different parsers/formats help a lot

Parser combination

C&C SD MC CoNLL | Enju CoNLL
MC CoNLL 57.44 (+1.35)
Enju CONLL | 56.47 (+0.38) | 56.24 (+0.23)
Enju PAS 57.20 (+0.63) | 57.78 (+1.21) | 56.59 (+0.02)

For more details, refer to Miwa et al. (COLING 2010)
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Search engine for biomedical papers

« NLP tools are applied to 19 million abstracts in
MEDLINE

— HPSG parsing
— Term recognition (proteins, diseases, etc.)
— Event expression recognition

« HPSG parsing allows us to search for predicate
argument relations rather than cooccurrences

— improves precision
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Search for predicate argument
relations

* "p&3 activates something” object subject
/

In this report , we demonstrated that human AMID gene promoter was activated by p53 in
reporter gene assays .

The p53 protein integrates multiple upstream signals and functions as a tumor
suppressor by activating distinct downstream genes .

Although 59%53 has been shown to directly activate transcriptional bax gene and to inhibit
expression of bcl-2 gene during radiation-induced apoptosis , it is poorly understood how
the Bcl-2 family changes in p53-deficient cells during radiation-induced apoptosis .

Since p21 is known to be transcriptionally activated by p53 , these results suggestthat TS
downregulation of p21 may be occurring through a p53-independent mechanism in this in
vitro cell system .

The DDATHF-stabilized p53 bound to the p21 promoter in vitro and in vivo but did not

activate histone acetylation over the p53 binding sites in the p21 promoter that is an integral
part of the transcriptional response mediated by the DNA damage pathway .
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MEDIE

* Subject/predicate/object specification is matched with
predicate argument structures

» Synonymous term/event expressions are matched

subject object
MAPKI i s¥arch |E clear || stop

uired '}- MHBs () affect because ERK2 inhibition by its inhibitor PD9B0SS significantly reversed TRAIL-
AEs (b) -transfected cells.

ior=wetiemenstrated for the first time that activation of phasphatidylinositol-3-kinase { PL-3K ) -Akt af | ) g
significantiy contnbute__.a cardioprotectiva effects of a Ca {24) antagonist and a beta-adrenerqic receptar blockef ==

Recently, we found that all-traps-retinoic=acid (atRA) triggers the activation xtracellular-signal- requlated k:nase il
which phosphorylates TR2 afg its! partitioning to promyelocytic led! e ;
activator function nfTR2 into repfEssio upta et al. 2008; Park et al. 2007).

Publicly available at: http://www-tsujii.is.s.u-tokyo.ac.jp/medie/
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System Architecture

Huge text Off-line
(e.g. MEDLINE) o i
ity |/ Parser | |
Term
: / recognizer/ |
: Event i

' expression

recognizer

Search engine
for structured text
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HPSG for syntax-based SMT

« HPSG works with syntax-aware SMT methods
— Tree-to-string
— String-to-tree
— Forest-to-string

« HPSG structures provide rich syntactic/semantic
information as features

— Phrase structure

— Construction type (i.e. schema name)
— Syntactic/semantic head

— Tense, aspect, voice

— Lexical entry name

— Predicate argument relations
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Extracting translation rules from
predicate argument relations

= | x, [ x, &= FJLE:

HEAD ¢
¢o | SEM_HEAD ¢

[HEAD q}
€1 | SEM_HEAD c

HEAD
C3 | SEM_HEAD cyf

[HEAD

_ 1 g HEAD Cs
€2 [SEM_HEAR ¢4 |[SEM_HEAD #| 7 |SEM_HEAD c;

| [HEAD "
¢s |SEM_HEAD £,

Minimum

5, - -7 Elmy]
Covering Tree | -

vav & 30— & Bl cecoding
John TPC Mary OBJ killed 1%




MT evaluation

* |dea: use labelled dependencies for MT evaluation

» Why: dependencies abstract away from some particulars
of surface realisation

» Adjunct placement, order of conjuncts in a coordination,
topicalisation, ...

c-structure level: f-structure level:
5 ™ SUBJ [PRED john I ; : :
s [NUM L ] " subj(resign, john)
NP VP — FERS 3 L o1
John — PRED  resign | P S(!Dhl‘l, 3)
v NP-TMP TENSE past " sumi(john, sg)

ADJ { [PRED d | .
- RERED AERERAL ' tense(resign, past)

' adj(resign, yesterday) |
s — sual l:F'F.‘ED 1nhn] " pers(yesterday, 3)

reslgned yesterday

R NUM  sg -
NP NP VP FERS 3 mum(yesterday, sg)
| | | — PRED resign
Yesterday John v TENSE  past ) ’
| L ADJ {[ PRED vyesterdayl}
resigned 193

Dependency-based MT evaluation

» Need a robust parser that can parse MT output &
— Treebank-induced parsers parse (almost) anything ...!
* To make this work, throw in:
— n-best parsing
— WordNet synonyms
— partial matching
— training weights

» Compare against string-based methods

« Compare (correlation) with human judgement
— Why: humans not fooled by legitimate syntactic variation
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IX. SUMMARY

Conclusions

Expressive grammars and robust, wide-
I coverage NLP are not a contradiction:

— Treebank-based grammar acquisition
provides wide coverage

— Effective statistical parsing methods provide
efficient and robust processing

— These grammars can also be used in other
applications, e.g.: IE, generation and MT
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