
1

Lectures on the Foundations of HPSG

Carl Pollard

Ohio State University

1 General character of HPSG

1.1 Similarities to Chomsky's EST/GB Framework

1.1.1 Same principal goal: To characterize human linguistic competence

i.e., to construct a scienti�c theory of the system of knowledge that is embodied in the human
mind/brain which makes language possible. This is distinct from constructing a psy-

cholinguistic theory (a theory of how the mind/brain uses that knowledge to produce and
interpret utterances). Knowledge of language is like a database or a system of knowledge represen-
tation; it is not a set of algorithms or procedures for processing language (though such processes
must have access to the system of linguistic knowledge: see below on \psycholinguistic responsi-
bility."). Part of the goal of characterizing competence is determining what all languages have in
common (so-called \Universal Grammar").1

1.1.2 Same empirical base: acceptability judgements of speakers

However, care is taken to consider judgements only relative to speci�ed classes of contexts. It is
important to control for di�ering abilities of native speakers to imagine contexts in which a given
string becomes acceptable.

1.1.3 Multiple representations

more or less analogous to \levels" of representation in EST/GB. But these are simultaneous (or
coexisting, or parallel) structures that are mutually constrained by the grammar; all are parts of a
single larger structures and none is sequentially derived from another.

1.1.4 Grammaticality is determined by the interaction between the lexicon and gen-

eral well-formedness principles

(roughly as in GB) rather than by large numbers of construction-speci�c rules (as in Chomsky's
\standard theory", classical Montague grammar, or GPSG).

1.1.5 Many EST/GB concepts have HPSG analogs.

Examples inlcude �-roles, indices, agreement features, and traces. But in HPSG these are all
carefully formalized so that empirically vulnerable predictions can be made.

1Transformational grammar has always made a point of being concerned with limiting the range of possible

variation across languages and explaining how language can be acquired. HPSG researchers consider these to be

interesting long-term goals, but don't think enough is known yet to warrant positing any empirical hypotheses.

2

1.1.6 Likewise many EST/GB principles have rough HPSG analogs.

Examples include binding principles A, B, and C, and constraints on \extraction" (such as subja-
cency and ECP).

1.2 Sociological di�erences

1.2.1 No \fearless leader"

There is no Chomsky-like �gure who is always assumed to be basically on the right track no matter
what s/he proposes. HPSG research is normal science: the testing of hypotheses that appear
plausible given accepted assumptions. The goal is not to �ll in the details of a vague theory which
is assumed to be basically right, but to successively replace empirical hypotheses with ones that
make better predictions.

1.2.2 Receptivity to adjacent technology

HPSG was developed in an environment where some familiarity with such technical bodies of
knowledge as logic, set theory, algebra, graph theory and/or theoretical computer science could be
assumed. Practitioners are willing to acquire a wide range of technical tools, and apply them in
the interest of making their analyses and theories clearer and more precise. Consequently, they can
have more con�dence in their proposals.

1.3 Methodological di�erences

1.3.1 Freedom from typological bias

It is not assumed that all languages are basically like English. Languages are not assumed to vary
without limit, but the starting assumption is that we do not know what the range of variation is,
and we can take very little for granted when we begin to try to uncover the structure of a language.

1.3.2 Nonprimacy of syntax

HPSG is not syntactocentric. There is no assumption that syntax is somehow primary, and that
morphology is done \in the syntax" (cf. a�x hopping, head movement). Phonology and semantics
are not \interpretations" of syntactic structures as in transformational models from Syntactic Struc-

tures to the Minimalist Program. Instead, it is assumed that we need to understand several di�erent
systems of linguistic knowledge, including syntax, semantics, morphology, phonology/prosody, and
pragmatics/discourse. In HPSG theories, most grammatical principles don't involve just one of
these, but instead constrain the relationship between two or more.

1.3.3 Empirical adequacy

HPSG is done bottom-up or inductively, generalizing from speci�cs instead of starting with grand
generalities and looking for particulars that con�rm them. Thus it employs the fragment method-
ology: make a precise, falsi�able hypothesis that accounts for a wide range of facts (i.e. get the
details right for a subpart of the language), then revise the hypothsis to expand coverage. Pre-
cise, empirically vulnerable generalizations with broad, determinable consequences (which might
not follow from very deep principles) are valued over deep principles that are so vague that their
empirical consequences cannot be deduced.

3

1.3.4 Psycholinguistic responsibility

Grammars, as models of competence, should nonetheless be capable in principle of being exploited
by plausible psycholinguistic models. Thus, they should not be based irreducibly on compu-
tations that a language user would be incapable of carrying out. And thus there is a somewhat
di�erent emphasis in the subject matter: instead of a (largely rhetorical) concern with how linguistic
knowledge is acquired, rather one is concerned with how it is organized so as to make language use
possible. The language user is viewed more as an information-processing agent than as language-
acquisition device. Ultimately, grammatical knowledge must be organized in such a way that it can
be employed e�ciently in a wide variety of tasks, including production, understanding, translation,
language games, making acceptability judgements, and more. But the linguistic framework itself
should be task-neutral.

1.3.5 Generativity

HPSG research takes it for granted (as Chomsky originally did) that the goal of a grammatical
theory of language X is minimally to tell what the well-formed structures of language X are (\de-
scriptive adequacy"). Thus, formal precision is necessary (the current Chomskyan view is that it is
\premature" and therefore undesirable). In an adequate formalization, according to Pullum (1989):

1. It must be made clear what mathematical structures are used to model di�erent kinds of
linguistic entities. (In HPSG, the mathematical structures are graphs of a certain kind called
feature structures.)

2. It must be determinate what the actual assertions of the theory are. They don't have to be
framed in formal logic or Prolog or Lisp or C++ though sometimes it is helpful to do this.
Careful English (or Korean, etc.) will do, as long as it is clear, speci�c, and unambiguous.

3. Given a grammar G and a mathematical object O used as a model of a candidate linguistic
entity (a representation), there has to be a way to tell whether or not O satis�es the constraints
imposed by G.

1.4 Architectural di�erences

There are large-scale di�erences in how theories are formulated or organized.

1.4.1 Structures employed as mathematical idealizations of linguistic entities

HPSG employs di�erent mathematical structures from EST/GB. The mathematical structures
of transformational theories are sequences of phrase-markers (trees, i.e., rooted, directed, graphs
satisfying the single mother condition, with nodes labelled by category symbols).

4

FIRST

PH
O

N

SYNSEM LOCAL

REST

CATEGORY

C
O

N
T

E
X

T

BACKGROUND

RELN

INSTANCE

RESTR

PERS

NUM

GEND

CASE

H
E

A
D

SUBCAT

she

nelist

elist

word
synsem local

neset

psoa
female

context

eset

3rd

ref

sing

femppro

cat

nom

noun

∋

●

●

●

●

●

●

●

●● CONTENT

●

● ●

●

●

●

● elist

●

●

●

INDEX

●

S S

NP VP NP VP
,

e V S �sh V S

seem NP VP seem NP VP

�sh to sleep t to sleep

In HPSG, the mathematical structures are feature structures: rooted, connected, directed
graphs, with each arc labelled by a feature name, and each node labelled by a species name (the
name of a kind of linguistic object).

� A rooted graph is one that has a distinguished node called the root.

� In a connected graph, every node is reachable from the root by a �nite sequence of edges.

� In a directed graph, the edges are directed (i.e. they are ordered pairs of nodes, not just
doubleton sets of nodes).

1.4.2 Grammars are formalized

Fully formalized, an HPSG grammar is formulated as a set of well-formedness constraints on feature
structures, of which each constraint is a (nonlogical) axiom in a certain kind of formal language
called a feature logic. (In these notes, we use a slight notational variant of King's (1989) SRL). The
familiar attribute-value matrices (AVMs) are an informal substitute for feature logic constraints.
Feature structures and feature logic satisfy the criteria of formal precision stated above in subsection
1.3.5. The constraints tell which feature structures are well-formed representations of linguistic

5

entities. Technically, a grammar is a logical theory, and a well-formed structure is a model of the
theory.

The feature logic is itself unconstrained in terms of what constraints it can express. It is
like predicate calculus or LISP in this respect: the constraints don't come from limits on what
theories the logic can express; they are a theory that the logic expresses. Thus HPSG employs an
expressive formalism, not a constrained formalism.

1.4.3 Nonderivationality

HPSG is nonderivational. It employs parallel representations which are mutually con-

strained by the grammar. This is also true of other nontransformational frameworks, such as
LFG, APG, autolexical syntax, construction grammar, and Jackendo�'s (1996) programmatic Rep-
resentational Modularity framework.

HPSG employs no transformations or other destructive operations to sequentially derive one
structure (or representation) from another. Instead, the di�erent representations (or levels, in
Ladusaw's (1988) terminology) are just subparts (features, actually) of a single larger structure,
and they are related not by destructive operations, but rather by declarative (asserted) constraints
of the grammar. 2 (Thus, the substructure reached from the root by following the PHON path is a
rough correspondent of the GB level PF; and the one reached by the path SYNSEMjLOCjCAT in a
verb corresponds roughly to the DS of the sentence headed by that verb; the substructure reached
by the path SYNSEMjLOCj CONT corresponds roughly to the GB level LF. Understood this way,
HPSG has considerably more levels than GB.)

1.4.4 Structural uniformity

HPSG is \fractal" (structurally uniform as the parts get smaller). Every sign down to the word
level (not just the root clause) has features corresponding (inter alia) to phonetic, syntactic, and
semantic aspects of linguistic structures

1.4.5 No lexical insertion

Words are just the same kind of thing (namely, signs) as phrases; they are just small-scale con-
strained parallel structures. Thus, there is no distinction between terminal nodes and preterminals,
and no issue (as in recent Minimalist Program work) of whether lexical insertion is \early" or \late".
This is a consequence of the theory being nonderivational and fractal.

1.4.6 Locality

HPSG employs only local constraints. There are no global constraints constraining structures
relative to other structures. Well-formedness is determined completely with reference to a given
structure, and not via comparison with any other \competing" structure (as it might be in MP and
OT).

2
Irreducible use of transformations is hard to reconcile with psycholinguistic responsibility: to determine PF

from LF, an SS must �rst be determined, from which one could work back to a DS source, and ahead to derive

a PF. The �rst two steps require \inverting transformations," which is a computational nightmare. Similarly for

determining LF from PF. Although some GBists (e.g. Koster (1987), Brody (1995)) have argued that GB theory

could just as well be reformulated without transformations, Chomsky has never been sympathetic to this position,

and with the Minimalist Program, it is not really an option.

6

1.5 Technical Di�erences

There are also smaller-scale di�erences in mechanisms employed by the framework. Some repre-
sentative examples:

� Tree-con�gurational notions like c-command and government have no role in HPSG, which
employs instead the traditional relation of obliqueness of grammatical relations, where
obliqueness increases from Subject to Primary Object to Secondary Object to Oblique PPs and
VP, AP, and S Complements. Thus, e.g. Principle A of the binding theory requires not that
an r-pronoun (anaphor) be coindexed with a c-commanding NP in some local domain, but
rather that it be coindexed with a less oblique argument of the same head (if there is one).

� Noncon�gurational de�nitions of grammatical relations. Grammatical relations are
de�ned noncon�gurationally, in terms of their relative order on the lists that are the values of
the VALENCE features. Thus, the subject is the unique item on the SUBJ list; the primary
object is the �rst item on the COMPS list, etc., rather than being sister-of-VP-and-daughter-
of-S, or daughter-of-VP-and-closest-sister-of-V, as in transformational theories from Aspects

through GB.

� Selection of subjects and speci�ers. Subjects and speci�ers (and their detailed properties,
such as number and de�niteness) can be selected (\subcategorized for") by lexical heads in
HPSG, just as complements are. Thus subjectless sentences are just as possible as intransitive
verbs, since a verb can select for \no subject".

� Semantic roles (\�-roles") are assigned to subjects directly, in the same way as to comple-
ments, not indirectly.

� Likewise, either subject or object can fail to be assigned a semantic role. Among
other things, this means that \raising-to-object" analyses are not ruled out. In GB, by
contrast, nonthematic objects are impossible.

� There is no requirement that every VP have a subject; thus, verbs that appear to take
in�nitive VP complements can be treated as actually doing so, with no need for a phono-
logically null subject (PRO or NP-trace). Control is treated as coindexing of the controller
phrase with the value of the SUBJ valence feature of the VP complement.

The following di�erences are directly related to the nonderivationality of HPSG.

� No NP-movement (and, more generally, no movement at all.)

Passive: Passive verbs are in the lexicon (perhaps mostly derived by lexical rule). They
project a phrase according to the same constraints as active verbs do.

Raising: Structure-sharing between the NP subject or object and the member of the
SUBJ valence feature list of the VP complement takes the place of NP-movement. Thus,
the analysis of raising structures di�ers from the analysis of equi-structures only in that 1)
raising predicates systematically have one semantic role fewer than equi predicates with the
same number of syntactic arguments, and 2) raising verb select (as subject or object) for the
same structure that the VP complement selects for its subject, while in the case of an equi
verb, the subject or object is only coindexed with the complement subject. Moreover, raising
to subject and raising to object are treated on a par.

7

� No WH-movement: The value of the SLASH feature throughout the path from the verb
whose argument is \missing" to the �ller WH-element is structure-shared with (1) the LOCAL
value of the �ller element, and (2) the LOCAL value of the missing argument.

� No head movement:

Verb inection: �nite verbs are speci�ed in the lexicon to select subjects bearing speci�c
agreement features. Thus there is no movement between V and In (in fact there is no need
for a distinct In node).

Inversion: Inverted structures are \at" structures, not derived from uninverted structures.
Thus there is no movement from In to Comp.

� More generally, there are no null functional heads (T, AgrO, AgrS, etc.). Instead the
corresponding work in HPSG is done by features.

� Likewise, there are no null complementizers.

8

RIGHT

np

det

v

n

det

n

vp

np

LEFT

LEFT

RIGHT

LEFT

LEFT

RIGHT

RIGHT

s

●

●

●

●

●

●

●

●

●

HIGH

LOW

FRONT

ROUNDED

+

_

+

+●

●

●

●

CAUSER

CAUSEE

EFFECT

BROKEN

index

index

break

cause

●

●

●

●

2 Foundations of the HPSG Formalism

2.1 Feature structures

Feature structures are mathematical objects|graphs of a certain kind|that are used as theoretical
models of structured entities of all sorts in the real world, not just linguistic entities. Thus, the
diagrams above represent a high front rounded object, a constituent structure diagram, and the
relation of breaking. (Note: these are for illustrative purposes only. They are not being posited as
serious linguistic analyses.)

3

2.2 Formal Machinery

Assume that there are given, disjoint, �nite sets F of feature names, and S of species names.

De�nition: A feature graph is an ordered triple G = < U , S, F >, where:

a. U is a set (called the nodes of G);

b. F is a function which associates with each feature name f a partial function F(f)
(also written f

G
) from U to U ; and

c. S is a function which associates with each species name s a subset of U ; S(s) is also
written s

G
).

9

Mathematically, a feature graph is just a sorted unary partial algebra, where S interprets the sorts
(species names) and F interprets the operations (feature names).

There is also a more primitive notion of (directed) graph, where all we have is nodes and
(directed) edges (with no species or features). This is de�ned as follows:

De�nition: A (directed) graph is an ordered pair G = < U , ! >, where:

a. U is a set (called the nodes of G);

b. ! is a binary relation on U (i.e., a subset of U � U) called the edges of G. (We
write p ! q to mean < p, q > 2 !.)

Often in working with graphs we single out a node which serves as a sort of \home base". Techni-
cally:

De�nition: A pointed graph is an ordered triple G = < q0;U ;! >, where < U ;! >

is a graph (called the underlying graph of G) and q0 2 U ; q0 is called the point of G.

De�nition: Given a graph < U ;! > and two nodes p, q 2 U , we say q is accessible
from p just in case p !* q. (For any binary relation R, R* is the reexive transitive
closure of R.)

Informally, q is accessible from p just in case there is a path (�nite sequence of edges) from p to q.)

De�nition: A pointed graph is called accessible (or an apg) i� every node is accessible
from the point. In this case, the point is called the root of the apg.

Thus, if G =< q0;U ;!> is an apg, then q0 is the root and every node in U is accessible from q0.
Trees are a familiar kind of apg. (An apg is a tree just in case each node is accessible from the root
via a unique path.)

Observation: Let G =< U , S, F > be a feature graph, and let !F � U � U be de�ned
as
S
ff

G
: f 2 Fg. Then < U ;!F> is a graph.

That is, given a feature graph, we can form the graph whose set of edges is the union of the
interpretations of the feature names. Intuitively, this amounts to throwing away all the labels on
the nodes and edges.

De�nition: A feature structure is a quadruple < q0;U ;S;F >, where < U ;S;F >

is a feature graph, and < q0;U ;!F> is an apg. We call q0 the root of the feature
structure.

Feature structures are what we will use as our mathematical idealizations of linguistic entities (i.e.
analyses of expressions).

2.3 Graph Notation

Nodes are represented by dots, and edges (or arcs) by arrows. Thus, in the graph � �! �, if the
left dot is p and the right dot is q, then p! q. For a feature graph, an arrow labelled with a feature
name f means that f

G
(p) = q, where p is represented by the dot from which the arrow originates

and q is represented by the dot the arrow points to. The root of a feature structure is indicated by
a short boldface arrow to a node: ! �.

10

2.4 Feature structures generated by nodes in feature graphs

De�nition: Let G = < U ;S;F > be a feature graph and q 2 U a node. The feature
structure generated by q in G;Gq , is < q;Uq ;Sq ;Fq >, where:

a. Uq = fp 2 U j q !�

F
pg;

b. for each s in S;Sq(s) = s
G
\ Uq ;

c. for each f in F ;Fq (f) = f
G
\ (Uq � Uq).

Thus the feature structure generated by a node q in a feature graph G contains only the nodes of
G accessible from q; and the interpetations of species names and feature names are obtained by
restricting their interpretations in G in the obvious way.

2.5 Feature structure homomorphisms and isomorphisms

Let G = < q0;U ;S;F > and G0 = < q00;U
0;S0;F0 >.

De�nition: A homomorphism from G to G0 is a function � : U ! U 0 such that

a. �(q0) = q 00;

b. for all q 2 U and f 2 F , if f
G
is de�ned at q, then f

G
0 is de�ned at �(q), and

f
G
0(�(q)) = �(f

G
(q));

c. for all q 2 U and s 2 S, if q 2 s
G
, then �(q) 2 s

G
0 .

This is just like a homomorphism in algebra (thinking of the interpretations of the feature names
as the algebra operations), with the additional provisos that the species and the root must be
preserved.

De�nition: A homomorphism is called an isomorphism if it has an inverse which is
also a homomorphism. It follows that isomorphisms are both one-to-one and onto.

Thus isomorphic feature structures \look the same"; they just have di�erent nodes. It is easy
to see that, for any feature structure G = < q0;U ;S;F >, the identity function on U ; id

U
, is an

isomorphism from G to G. Also, if � is a homomorphism from G to G0 and �0 is a homomorphism
from G0 to G00, then �0 � � is a homomorphism from G to G00.

In HPSG, as explained below, a grammar is a kind of logical theory whose intended interpre-
tations are feature structures. Thus the grammar picks out a certain class of feature structures,
namely the ones that are models of the grammar. Now clearly, for any feature structure, there are
in�nitely many other feature structures (in fact, a proper class of them) isomorphic to it. However,
as linguists, when we are given a grammar, we don't really care about the whole class of models.
All we really care about is which feature structures are models up to isomorphism; e.g. the fact that
there is an in�nity of di�erent feature structure models of the sentence poor John ran away is not of
interest to us, since all these models are isomorphic. What we would really like is a way to pick out
from each isomorphism class of models a unique canonical representative. Then we could consider
the grammar to generate precisely the set of feature structures which are the canonical repre-
sentatives of the various isomorphism classes of models. This idea connects the model-theroetic
interpetation of grammars with the standard linguistic notion of (strong) generative capacity.

In fact, there is a rather simple mathematical technique for constructing such representative
feature structures; roughly speaking, the trick is to choose feature structures whose nodes are
equivalence classes of paths (strings of feature names). The precise construction, which is a slight
variant of Moshier's (1988) notion of an abstract feature structure, is described in Pollard 1998.

11

2.6 Paths

A path is a member of F�, i.e., it is a �nite sequence (string) of feature names. As usual, the null
path (path of length zero) is denoted by �. Given a feature graph G =< U ;S;F >, the function
F : F ! [U * U] can be extended to a function ~F : F� ! [U * U] as follows: ~F is de�ned by
recursion on path lengths n such that:

a. if a path � is of length 0 (i.e., � = �) then ~F = id
U
;

b. if � is of length n > 0 and � = f �0 where f 2 F and �0 is a path of length n-1, then

~F(�) = (~F(�0)) � (F (f)).

(That is, for a path of length n > 0, the function it denotes is the composition of two functions:
the one denoted by its �nal subpath of length n-1, and the one denoted by its initial feature.)

~F(�) is also written �
G
. Thus

�
G
= id

U

and if � = f�0, then

�
G
= �0

G
� f

G

Also, (f 1 � � � f n)G = (f n)G � � � � � (f 1)G .

2.7 King formulas

Given disjoint �nite sets F (feature names) and S (species names), the set K of King formulas

(cf. King (1989) is de�ned recursively as follows:

a. for each s in S, s 2 K;

b. > 2 K;

c. for each path � and each formula � 2 K; (� : �) 2 K

d. for �1 and �2 paths (�1
:
= �2) 2 K;

e. for �1 and �2 paths (�1 6
:
= �2) 2 K;

f. for � and 2 K; (� ^) 2 K;

g. for � and 2 K; (� _) 2 K;

h. for � and 2 K; (�!) 2 K;

i. for � and 2 K; (:�) 2 K;

j. nothing else is in K.

As described below, King formulas are used in HPSG both as descriptions of feature structures and
as constraints in grammars. To explain the di�erence, we begin by de�ning a satisfaction relation
j= between feature structures and King formulas, analogous to the relation between �rst-order
models and �rst-order formulas.

12

2.8 Satisfaction

The satisfaction relation j= between a feature structure G = < q0;U ;S;F > and a King formula is
de�ned by structural recursion on formulas as follows:

a. G j= s i� q0 2 s
G
;

b. G j= > never;

c. G j= (� : �) i� �
G
is de�ned at q0 and G�G(q0) j= �;

d. G j= (�1
:
= �2) i� (�1)G and (�2)G are both de�ned at q0 and have the same values;

e. G j= (�1 6
:
= �2) i� (�1)G and (�2)G are both de�ned at q0 and have di�erent values;

f. G j= (� ^) i� G j= � and G j= ;

g. G j= (� _) i� G j= � or G j= ;

h. G j= (�!) i� G 6j= � or G j= ;

i. G j= (:�) i� G 6j= �.

Note: if G and G0 are isomorphic feature structures, � is a King formula, and G j= �, then also
G0 j= �.

If G j= �, then we say G satis�es � or � describes G. A formula is called satis�able if some
feature structure satis�es it (or, equivalently, if it describes some feature structure). For a set of
formulas �, we say G j= � i� G j= � for every � 2 �.

2.9 Entailment and (semantic) equivalence

Let � be a set of formulas and � a formula. Then we say � entails �, written � j= �, provided
for all feature structures G, if G j= � then G j= �. If � contains only one formula �, we usually
write � j= for � j= . If � and are two formulas such that � j= and j= �, then we say �
and are (semantically) equivalent, written � � . Equivalent formulas describe the same feature
structures.

2.10 Constraints and Grammars

Let � be a formula and G a feature structure (or more generally, a feature graph). Then we say G
models � (or, is a model of �) provided, for every node q of G;Gq j= �. For � a set of formulas
(e.g., a theory), we say G models � if G models � for every � 2 �. Note: if G models �, then
G j= �, but the converse is in general false.

It is important to understand the relation between a description and a constraint. A formula
is called a description when we are concerned only with which feature structures satisfy it. By
contrast, a formula is called a constraint when we are concerned with which feature structures
model it.

A grammar is just a set of formulas viewed as constraints. If G is a grammar and G a feature
structure which models G, we also say G generates G, or G is well-formed relative to G. 3 We
can now consider some examples of constraints typically employed in HPSG grammars.

3Strictly speaking, the grammar generates only the models which are canonical representatives of isomorphism

classes of models. See Pollard 1998.

13

2.11 Species disjointness

It is standard to assume that, in order to be well-formed, a feature structure must be such that
each of its nodes belongs to only one species. We can enforce this condition by including in the
grammar, for each pair of distinct species names s and s0 the constraint :(s ^ s 0).

2.12 Closed World Assumption

Another standard assumption in HPSG is that there aren't any linguistic entities beyond the species
corresponding to the species names in S. This can be thought of as a version of the fragment
methodology. Another way to say this is that in order for a feature structure to be well-formed,
every one of its nodes must belong to at least one (and given species disjointness, therefore exactly
one) of the species. This can be expressed as the constraint:

n_
i=1

si (where S = fs1 ; � � � ; sng)

(Note: for �1; � � � ; �n formulas, the notation
n_
i=1

�i is a shorthand interpreted as follows:

for n=1,
n_
i=1

�i means �1

for n > 1, it means (
n�1_
i=1

�i) _ �n

Thus, e.g., if n = 3,
n_
i=1

�i is shorthand for ((�1 _�2)_�3). A similar convention applies for
n̂

i=1

�i.)

2.13 Feature Geometry Constraints

These are constraints which tell us what features di�erent species have, and what species the values
of those features belong to. In HPSG it is standardly assumed that for each feature, there is a set
of species such that that feature is de�ned for all nodes belonging to that species, but unde�ned
for all other nodes. Thus, for each feature f, there is a constraint of the form

((f
:
= f)$

m_
i=1

ti)

where each of the ti is a species. For example, in HPSG, words and phrases (but nothing else) have
the feature phonology. Thus HPSG grammars contain the constraint4

((PHONOLOGY
:
= PHONOLOGY) $ (word _ phrase))

(Thus, anything that has a phonology attribute is either a word or a phrase, and every word or
phrase has a phonology attribute.)

Another type of feature geometry constraint tells, for a given species and a given feature de�ned
for that species, what species the value of that feature can be. Such constraints have the form

4As in propositional logic, \�$ " is shorthand for ((�!) ^(! �)).

14

(s! (f :
m_
i=1

ti))

For example, a German HPSG grammar might include the constraint

(noun! (CASE : (nom _ acc _ gen _ dat))).

2.14 Other constraints

Besides the feature geometry constraints, species disjointness, and the closed world assumption
(which are sometimes referred to collectively as ontological constraints), grammars must contain
further constraints which serve to determine (among those feature structures which satisfy the on-
tological constraints) which feature structures are well-formed. These constraints do the work done
in other frameworks by such devices as lexical entries, phrase-structure (or immediate-dominance)
rules, and principles of well-formedness (e.g., Subjacency, Binding Principle A, etc.). For example,
it is standardly assumed in HPSG that for all headed phrases, the \head features" are the same as
on the head daughter. This is formally expressed by the constraint

(headed-phrase ! (SYNSEMjLOCjCATjHEAD
:
=

HEAD-DTRjSYNSEMjXSLOCjCATjHEAD))

In HPSG, the lexicon is also a constraint. It has the form

(word!
N_
i=1

�i)

where each of the �i is a lexical entry. That is, each lexical entry is a formula (or description)
which presents one of the (�nitely many) options for a feature structure of species word to be a
well-formed (structural representation of a) word. The lexicon, as a constraint, simply requires
that every word take one of these options.

Similarly, there is a constraint on phrases of the form

(phrase!
M_
i=1

�i)

where each of the �i is an immediate dominance schema (or phrase-type). That is, each of the
�i presents one of the (small number of) options for a feature structure of species phrase to be a
well-formed (structural representation of a) phrase. Thus the �i do the same kind of work in HPSG
as schematic immediate dominance rules (such as the rules of �X theory) do in GB theory.

2.15 Formal properties of King formulas and grammars

Here we assemble some basic facts about formal properties of King formulas and grammars. For
this discussion, assume we are given a set O of ontological constraints as discussed in 11-13 above.
A feature structure is called ontologically acceptable if it satis�es all the ontological constraints
(species disjointness, closed world, and feature geometry).

a. There is a proof theory for K which is sound and complete relative to ontological acceptability.
Among other things, this means that for any two formulas � and , O ` (� !) i� every
ontologically acceptable feature structure that satis�es � also satis�es .

15

b. Given a formula �, it is decidable whether or not � is satis�ed by some ontologically acceptable
feature structure or other. Likewise (since negation is classical), it is decidable whether � is
valid relative to ontological acceptability (i.e., whether every ontologically acceptable feature
structure satis�es �).

c. Given a grammar G and a formula � it is in general undecidable whether G predicts a feature
structure which satis�es � (or equivalently, whether there is a feature structure which models
G and satis�es �).

d. Given a set of ontological constraints O and a formula �, there is a formula �0 which is (se-
mantically) equivalent to � relative to O (i.e., � and �0 are satis�ed by the same ontologically
acceptable feature structures) such that �0 is a disjunction of conjunctions of formulas of one
of the three forms (� : s), (�1

:
= �2), and (�1 6

:
= �2). Thus, when K is being used only for

description (as opposed to for constraints), no descriptive power is sacri�ced by abstaining
from the use of : and !.

2.16 Attribute-value matrices (AVMs)

King formulas are useful when great formal precision is needed (e.g., in proofs or in designing
computer implementations). But they are too long and too hard to understand quickly for everyday
linguistic analysis. For this reason, HPSG linguists usually use a di�erent kind of description,
attribute-value matrices (avms), in normal practice. The general format of an avm is as follows:

a. a tag (boxed numeral like 7) is an avm.

b. a species symbol (e.g., word) or a disjunction of species symbols (e.g., word _ phrase) is an
avm; this kind of avm is called a sort description. (Cf. section 19 below.)

c. a bracketed description, including the empty description `[]', is an avm.

This has the form
2
6664
path1 AVM1

...

pathn AVMn

3
7775

In any avm, any non-null combination of (a), (b), and (c) can be present. Thus, the following
possibilities are available:

a. just a tag: n ;

b. just a sort description: s, or s1 _ � � � _ sn;

c. just a bracketed description;

d. both (a) and (b), e.g., n s;

e. both (a) and (c), e.g.,
n

"
� � �

� � �

#

16

f. both (b) and (c), e.g.,

2
664
s

� � �

� � �

3
775

g. all three, e.g.,

n

2
664
s

� � �

� � �

3
775

Note that tags go outside the left bracket, and sort speci�cations go inside the left bracket at the
top (or in some work, outside the left bracket at the bottom). Sort descriptions are equivalent to
the identical King formulas. The lines inside a bracketed description are interpreted as equivalent
to conjunction of King formulas. Co-occurrence of two or more instances of the same tag in an
avm is equivalent to path equalities (�1

:
= �2). For example, the King formula

((SUBJjHEAD:((CASE: nom) ^ (AGR ((PER: 3rd) ^ (NUM: sing))))) ^
(HEAD: (verb ^ (VFORM: �n) ^ (AUX: {))) ^

(SUBJjHEADjAGR
:
= HEADjAGR))

is equivalent to the avm 2
666666666666664

subjjhead

2
664
case nom

agr 1

"
per 3rd

num sing

#
3
775

head

2
66664
verb

vform �n

aux {

agr 1

3
77775

3
777777777777775

As a matter of style, when several paths share a pre�x, that pre�x is normally written only once
for all the paths. Thus, we write:

2
4head

"
vform �n

aux {

#3
5

rather than: 2
64head

h
vform �n

i
head

h
aux {

i
3
75

This example makes obvious the relative advantages and disadvantages of the two styles of
description. Either one is satis�ed by the following feature structure:

17

PER

NUM
3rd

sing

fin

●

●

●

SUBJ
HEAD

CASE

AUX

VFORM

AGR

nom

verb

●

●

●

●

●

HEAD

●

●

AGR

There is no standard equivalent of path inequalities for avms, but one obvious way to do it
is to list path inequalities as additional lines inside a bracketed description. Thus, e.g., the King
formula (SUBJjINDEX 6

:
= OBJjINDEX) would be expressed as the avm:h

subjjindex 6
:
= objjindex

i
A less obvious but more readable alternative is the following:2

664
subjjindex 1

objjindex 2

1 6
:
= 2

3
775

2.17 Subsumption and uni�cation of AVMs

Given two avms �1 and �2, we say that �1 subsumes �2 if the class of feature structures that �1
describes is at least as big as the class of feature structures that �2 describes. If �1 and �2 are King
formulas equivalent to �1 and �2 respectively, then �1 subsumes �2 i� �2 entails �1.

Again let �1 and �2 be two avms, with equivalent King formulas �1 and �2 respectively. An
avm �3 is called the uni�cation of �1 and �2 (or more correctly, a uni�cation of �1 and �2) if
�3 is equivalent to �1 ^ �2. Thus, �3 will describe those feature structures which both �1 and �2
describe (and no others).

2.18 Sorts and sort hierarchies

In writing HPSG grammars, certain disjunctions of species names are used repeatedly. For exam-
ple, in a German grammar, one might often have occasion to employ the disjunction (nom _ acc _

gen _ dat) (as in the constraint at the end of Sec. 13). Similarly, the disjunction (word _ phrase)
recurs frequently. Frequently used disjunctions are usually abbreviated with a single symbol, so
that (word _ phrase) is usually abbreviated sign and (nom _ acc _ gen _ dat) is usually abbreviated
case. Such abbreviations make grammars much easier to read and write (e.g., ((PHONOLOGY
:
= PHONOLOGY) $ (sign)), (noun ! (CASE: case))). Of course, such abbreviations are mean-
ingless unless they are made explicit. This is typically done by means of a diagram called a sort

hierarchy (where a sort is just a symbol that is either a species name or an abbreviation for a
disjunction of species names). Thus, the sort hierarchy

case

nom acc gen dat

18

is equivalent to de�ning the symbol \case" as an abbreviation for \(nom _ acc _ gen _ dat)."
More generally, sorts can be used as abbreviations for disjunctions of sorts (each of which in turn
may be either a species name or an abbreviation). Thus, for example, the sort head may be used
to abbreviate the disjunction of the parts of speech noun, verb, adj, prep, det, conj, deg (for the
sake of this example, we assume that these are all the parts of speech). But among the parts of
speech we might want to group the �rst four together as substantive and the last three as functional.
(Typically we group species or sorts together when there is some feature they have in common,
or there is some constraint that applies to just them.) We can do this by positing the sort hierarchy

head

substantive functional

noun verb adj prep det deg conj

Given two sorts �1 and �2 we say �1 is a subsort of �2 if it is more speci�c than �2 in the sort
hierarchy. Thus, e.g., prep and functional are subsorts of head. Alternatively, if �1 is a subsort of
�2, we can also say �2 is a supersort of �1.

Note: for any sort hierarchy, it is always assumed that the subsorts are pairwise incompatible
(mutually exclusive). Thus, positing a hierarchy amounts logically to adding to the grammar a set
of constraints of the form:

((� $ (�1 _ � � � _ �n))

and

:(�i ^ �j) (for all i, j = 1, ... n, with i 6= j)

2.19 Feature declarations

Feature declarations, employed in conjunction with sort hierarchies, are a convenient notational
alternative to feature geometry constraints; feature declarations together with sort hierarchies are
the ususal way to express ontological constraints informally.

For example, the constraint (noun ! (CASE : (nom _ acc _ gen _ dat))) is expressed as the
feature declaration noun: [case case], where the sort hierarchy headed by case is de�ned as above.
To take a more complex example, the sort hierarchy with feature declarations:

sign:"phonology list

synsem synsem

#

word phrase:"head-dtr sign

non-head-dtrs list

#

is equivalent to the following set of feature geometry constraints (assuming that word, phrase, and
synsem, and list are species):

((word _ phrase) $ ((PHONOLOGY
:
= PHONOLOGY) ^ (SYNSEM

:
= SYNSEM)))

(phrase $ (DTRS
:
= DTRS))

19

((word _ phrase) ! ((PHONOLOGY: list) ^ (SYNSEM: synsem)))

(phrase ! ((HEAD-DTR: word _ phrase) ^ (NON-HEAD-DTRS: list)))

2.20 Lists

In HPSG, lists are usually introduced in the following way. We assume species names elist (empty
list) and nelist (nonempty list), and feature names first and rest, subject to the following feature
geometry constraints:

(nelist $ ((FIRST
:
= FIRST) ^ (REST

:
= REST)))

(nelist ! (REST: (elist _ nelist)))

Informally, we can say the same thing with a sort hierarchy and feature declarations, as follows:

list

elist nelist
"
first: object

rest: list

#

where object is a sort that abbreviates the disjunction of all the species names. (Thus if all the
sorts are arranged in a single hierarchy, object is at the top.) The intuition is just that a list can be
either an empty list or a nonempty list, and in the latter case it has a first, which can be anything,
and a rest, which is a list.5 In avms, list descriptions are usually abbreviated by angle-bracket
notation. Thus, <a, b, c> abbreviates the avm:2

666666666666664

nelist

first a

rest

2
666666664

nelist

first b

rest

2
664
nelist

first c

rest elist

3
775

3
777777775

3
777777777777775

Also, in avms, elist is often written <>.
In practice, we usually want to work with lists all of whose members are of the same sort. In

order to do this, we would need to revise the sort hierachy to contain feature declarations along
the following lines, with a new species of nonempty list nelist[�] for each species (or sort) of thing
� that we need lists of, as follows:

5The LISP notions LIST, NIL, CONS, CAR, and CDR correspond to list, elist, nelist, first and rest, respectively.

20

list

elist nelist

"
first: object

rest: list

#

nelist[synsem] . . ."
first: synsem

rest: elist _ nelist[synsem]

#

2.21 A new kind of formula: path relations

For each natural number n, we introduce a �nite set of n-ary relation names. If R is an n-ary
relation name and �1; � � � ; �n are paths, then R(�1; � � � ; �n) is a formula. Of course, to be useful,
we must be told what it means for a feature structure to satisfy a path relation formula. There are
a number of di�erent proposals about how to do this (e.g. Richter in preparation), not all of which
have the same consequences.

Append

Append is a ternary relation symbol. Path relation formulas employing Append are much-used
in HPSG since they are used to express that one list is the concatenation of two other lists.
More precisely, satisfaction for Append formulas is de�ned in such a way that, for any three paths
�1; �2; �3,

6

G j= Append(�1; �2; �3) i�

1. G j= ((�1 : list) ^ (�2 : list) ^ (�3 : list)) and

2. either

a. G j= ((�1 : elist) ^ (�2
:
= �3)) or

b. G j= (�1jfirst
:
= �3jfirst) and G j= Append(�1jrest, �2; �3jrest)

The two options are illustrated by the following two schematic graphs:

elist

list

π1

π2

π3

●

●

6The following biconditional statement does not actually de�ne what it means for a feature structure to satisfy

an Append-formula, but it places a very strong constraint on possible de�nitions.

21

elist

list

π1

π3

●

●

●

●

●

●

●

●

●

●

●

●

π2

REST REST

RESTREST F
IR

S
T

F
IR

S
T

F
IR

S
T

F
IR

S
T

F
IR

S
T

F
IR

S
T

REST

REST

Append-SYNSEMs

The ternary relation symbol Append-synsems is employed in an important constraint called the
Valence Principle. Intuitively speaking, satisfaction for Append-synsems formulas is de�ned in such
a way that G j= Append-synsems(�1; �2; �3) if �1; �2 and �3 are all lists and �3 is the concatenation
of the list of synsem values of the �1 list with the �2 list. More precisely, it is de�ned in such a
way that the following biconditional holds:

G j= Append-synsems(�1; �2; �3) i�

1. G j= ((�1 : list) ^ (�2 : list) ^ (�3 : list)) and

2. either

a. G j= ((�1 : elist) ^ (�2
:
= �3)) or

b. G j= ((�1 : nelist) ^ (�1jfirstjsynsem= �3jfirst) ^Append-synsems(�1jrest, �2; �3jrest))

Schematically: 2
6664
�1 <

h
synsem 1

i
,
h
synsem 2

i
,
h
synsem 3

i
>

�2 4

�3 < 1 , 2 , 3 j 4 >

3
7775

The Valence Principle is the following constraint:

headed-phrase !
2
666666666666666666666666664

synsemjlocjcatjval

2
664
subj 4

comps 5

spr 6

3
775

head-dtrjsynsemjlocjcatjval

2
664
subj 7

comps 8

spr 9

3
775

subj-dtr 1

comp-dtrs 2

spr-dtr 3

Append-synsems(1 , 4 , 7)

Append-synsems(2 , 5 , 8)

Append-sc synsems(3 , 6 , 9)

3
777777777777777777777777775

22

This says that, in a headed phrase, for each valence feature F, phrase, the F value of the head
deaughter is the concatenation of the list of synsem values of the F-daughters with the F-value of
the phrase itself.

An alternative \functional" notation for AVMs employing relations is illustrated in the following
expression of the Valence Principle"2

66666666666666666664

synsemjlocjcatjval

2
664
subj 4

comps 5

spr 6

3
775

head-dtrjsynsemjlocjcatjval

2
664
subj Append-synsems(1 , 4)

comps Append-synsems(2 , 5)

spr Append-synsems (3 , 6)

3
775

subj-dtr 1

comp-dtrs 2

spr-dtr 3

3
77777777777777777775

This following (conventionalized) description of a sentence illustrates the e�ect of the Valence
Principle:

23

2
666666664
synsem j loc jcat

2
66666664

head 3

valence

2
66664
subj

D E
comps

D E
spr

D E

3
77775

3
77777775

3
777777775

S H

2 NP [nom]
2
666666664
synsem j loc jcat

2
66666664

head 3

valence

2
66664
subj

D
2

E
comps

D E
spr

D E

3
77775

3
77777775

3
777777775

Kim

H C

2
666666664
synsem j loc jcat

2
66666664

head 3 verb

valence

2
66664
subj

D
2

E
comps

D
1

E
spr

D E

3
77775

3
77777775

3
777777775

1 NP[acc]

saw Sandy

24

REFERENCES

Brody, Michael. 1995. Lexico-logical form. Linguistic Inquiry Monograph. Cambridge, MA.:
MIT Press.

Jackendo�, Ray S. 1996. The architecture of the language faculty. Cambridge, MA: MIT
Press.

King, Paul. 1989. A logical formalism for head-driven phrase-structure grammar. Manchester
University Ph.D. Dissertation.

Koster, Jan. 1987 Domains and dynasties. Dordrecht: Foris.

Ladusaw, William. 1988. A proposed distinction between level and stratum. Linguistics in
the morning calm 2, ed. by the Linguistic Society of Korea. Seoul: Hanshin Publishing Co.

Moshier, Drew. 1988. Extensions to uni�cation grammars for the description of programming
languages. University of Michigan Ph.D. dissertation.

Pullum, Geo�rey K. 1989. Formal linguistics meets the boojum. Natural Language and
Linguistic Theory 7: 137-143.

Richter, Frank. In preparation. Eine formale Sprache f�ur HPSG und ihre Anwendung in
einem Syntaxfragment des Deutschen. Ph.D. thesis, Eberhard-Karls-Universit�at, T�ubingen.

