In Search of the Best Method for Sentence Alignment in Parallel Texts

Alexandr Rosen

alexandr.rosen@ff.cuni.cz

Institute of Theoretical and Computational Linguistics Faculty of Arts and Philosophy, Charles University Prague, Czech Republic

slovko 2005, 10 November 2005

Plan of the talk:

- 1. *InterCorp* a parallel corpus project for 20+ languages
- 2. Options for sentence alignment
- 3. Comparison of alignment tools
- 4. Joining forces
- 5. Conclusions

1 The project InterCorp

https://trnka.ff.cuni.cz/ucnk/intercorp/
- sorry, so far only česky (in Czech)

Participants:

(mostly from the Charles University's Faculty of Arts and Philosophy)

- Foreign language departments
- Institute of the Czech National Corpus
- Institute of Theoretical and Computational Linguistics

Other projects involving many languages:

- OPUS Tiedemann & Nygaard (2004) (http://logos.uio.no/opus/)
- Joint Research Centre of the European Commision: Acquis Communautaire (http://www.cba.muni.cz/~zizka/Langtech/)

Initial stage:

- Some participants already have some parallel corpora
- They use *ParaConc* for segmentation, alignment and search (http://www.athel.com/para.html)

Goals:

- 20+ parallel subcorpora
- Czech always L1 = the pivot
- Balance: mainly fiction, preference for Czech originals
- Alignment: by sentences, as complete and correct as possible
- Distributed pre-processing
- All subcorpora integrated into a single shared resource

For:

- Comparative studies
- Teaching
- Lexicography (including term extraction)
- Extraction of Translation Memories
- Translators
- General public
- ...

2 Alignment

- A parallel corpus is only as good as its alignment.
- Good results of automatic alignment can save manual work.
- Is there a single best all-purpose way to sentence alignment?
- NO! At least according to previous evaluations of sentence aligners:
 - Langlais et al. (1998)
 - Véronis & Langlais (2000)
 - Singh & Husain (2005)

The choice depends on properties of the input and intended use of the output:

- structural distance between the two texts (free or literal translation)
- amount of noise (omissions, differences in segmentation)
- typological distance between the two languages
- size of the texts
- acceptable error rate
- acceptable amount of manual checking

With no single text type + diverse languages \rightarrow (probably) no universal solution

Automatic alignment with manual checking

- If near-to-perfect alignment is required and manual checking is possible, how can we integrate manual checking with automatic methods?
- Should we aim for maximum precision and recall, or perhaps – sacrifice recall for higher precision?
- If *safe* links have precision near 100%, maybe only *unsafe* links need to be checked.
- Let's see how to reach maximum precision...

3 Comparison

- GC Gale & Church (1993) matches sentences by their lengths (counted in characters), the texts should be previously aligned by paragraphs; fast, language-universal http://nl.ijs.si/telri/Vanilla/
- Mmd Melamed (1997) uses cognates (puctuation, numbers, similar words) and (optionally) bilingual lexicon http:// nlp.cs.nyu.edu/GMA/
- Mre Moore (2002) combines length-based pre-alignment with a stochastic method to derive a bilingual lexicon, used subsequently to align sentences, proposes 1:1 links only http://research.microsoft.com/research/downloads/default.aspx
- Hun Varga et al. (2005) HunAlign, combines length- and lexicon-based methods, can extract lexicon from the text as Mre does, customizable http://mokk.bme.hu/resources/ hunalign

Mmd⁺ – same as **Mmd**, with a 106K-entries bilingual lexicon

- Mre* same as Mre, with some final and initial word segments stripped
- **Mre**⁺ same as **Mre**, with more input data (a 106K-entries bilingual dictionary and an English-Czech pre-aligned corpus of 830K/731K words)

Texts used for testing

- AC 46+46 documents from the English-Czech part of Acquis Communautaire (roughly 1%); all noise was retained (omissions, results of different segmentation rules); segments = paragraphs
- **1984** George Orwell's novel, English and Czech (result of the project Multext-East)
- **FR7** Seven French fiction/essay books + Czech translations

Results were compared with hand-corrected alignment of full texts:

Text	Cz words	L2 words	Cz segments	L2 segments	All links	1:1 links
AC	62,010	74,986	3,025	2,699	2,685	89%
1984	99,099	121,661	6,756	6,741	6,657	97%
FR7	289,003	337,226	21,936	21,746	21,207	95%

Measures for evaluating alignment

$$recall = \frac{correct \ links}{reference \ links}$$
$$precision = \frac{correct \ links}{test \ links}$$

$$F\text{-measure} = 2 \times \frac{\text{recall} \times \text{precision}}{\text{recall} + \text{precision}}$$

All links ...

	Reference	Test	Correct	Recall	Precision	F-measure
AC						
GC	2700	2683	2225	82.41	82.93	82.67
Mmd^+	2700	2686	2492	92.30	92.78	92.54
Mre	2700	2313	2218	82.15	95.89	88.49
Mre ⁺	2700	2375	2308	85.48	97.18	90.96
1984		·				
GC	6657	6633	6446	96.83	97.18	97.01
Mmd^+	6657	6606	6287	94.44	95.17	94.81
Mre	6657	6167	6110	91.78	99.08	95.29
Mre*	6657	6370	6320	94.94	99.22	97.03
Mre ⁺	6657	6441	6402	96.17	99.39	97.76
Hun	6657	6689	6535	98.17	97.70	97.93
F7						
GC	21207	20868	19427	91.61	93.09	92.34
Mre	21207	19512	18801	88.65	96.36	92.35
Mmd	21207	21057	16161	76.21	76.68	76.44

Links 1:1 only ...

	Reference	Test	Correct	Recall	Precision	F-measure
AC						
GC	2391	2248	2156	90.17	95.91	92.95
Mmd^+	2391	2354	2304	96.36	97.88	97.11
Mre	2391	2313	2218	92.76	95.89	94.30
Mre ⁺	2391	2375	2308	96.53	97.18	96.85
1984						
GC	6440	6438	6274	97.42	97.45	97.44
Mmd^+	6404	6301	6287	97.62	99.78	98.69
Mre	6440	6167	6110	94.88	99.08	96.93
Mre*	6440	6370	6320	98.14	99.22	98.67
Mre ⁺	6440	6441	6402	99.41	99.39	99.40
Hun	6440	6479	6386	99.16	98.56	98.86
F7						
GC	20116	19220	19427	92.62	96.94	94.73
Mre	20116	19512	18801	93.46	96.36	94.89
Mmd	20116	19714	15539	77.25	78.82	78.03

Observations

Ranking for recall (all links)

Rank	AC	1984	F7
1.	92.30 Mmd+	98.17 Hun	91.61 GC
2.	85.48 Mre ⁺	96.83 GC	88.65 Mre
3.	82.41 GC	96.17 Mre ⁺	76.21 Mmd
4.	82.15 Mre	94.94 Mre*	
5.		94.44 Mmd+	
6.		91.78 Mre	1

Ranking for precision (all links)

Rank	AC	1984	F7
1.	97.18 Mre ⁺	99.39 Mre ⁺	96.36 Mre
2.	95.89 Mre	99.22 Mre*	93.09 GC
3.	92.78 Mmd+	99.08 Mre	76.68 Mmd
4.	82.93 GC	97.70 Hun	
5.		97.18 GC	
6.		95.17 Mmd+	

Ranking for F-measure (all links)

Rank	AC	1984	F7
1.	92.54 Mmd+	97.93 Hun	92.35 Mre
2.	90.96 Mre ⁺	97.76 Mre ⁺	92.34 GC
3.	88.49 Mre	97.03 Mre*	76.44 Mmd
4.	82.67 GC	97.01 GC	
5.		95.29 Mre	
6.		94.81 Mmd+	

Similar picture for 1:1 pairs, except for recall (of course ...).

- On noisy texts, Mmd and Mre fare better than GC.
- On well-behaved texts, Mre and Mmd tend to show higher precision.
- GC performed surprisingly well on F7 without paragraph boundaries (the hard region was a book).
- Hun scored best in F-measure.
- Mre and Hun can be expected to gain further points with more input data and lemmatization.
- Also Mmd may profit from creating more cognates by lemmatization.

4 Joining forces

- Can we push precision closer to 100%?
- A single text pair can be processed by more than one aligner and a correct link defined as one on which all (or most) aligners agree.
- Intersection of results → smaller, safer set, a decrease in recall, an increase in precision.

Intersecting results on 1984

	Ref.	Test	Correct	Recall	Prec.	F-msr
GC	6657	6633	6446	96.83	97.18	97.01
Mmd ⁺	6657	6606	6287	94.44	95.17	94.81
Mre ⁺	6657	6441	6402	96.17	99.39	97.76
GC/Mmd ⁺	6657	6279	6254	93.95	99.60	96.69
GC/Mre ⁺	6657	6354	6348	95.36	99.91	97.58
Mmd ⁺ /Mre ⁺	6657	6130	6114	91.84	99.74	95.63
GC/Mmd ⁺ /Mre ⁺	6657	6095	6089	91.47	99.90	95.50

Intersecting results on F7

	Ref.	Test	Correct	Recall	Prec.	F-msr
GC	21207	20868	19427	91.61	93.09	92.34
Mre	21207	19512	18801	88.65	96.36	92.35
Mmd	21207	21057	16161	76.21	76.68	76.44
GC/Mre	21207	17728	17661	83.28	99.62	90.72

Tuning Mre on 1984

	Ref.	Test	Correct	Recall	Prec.	F-msr
Mre ⁺ 0.5	6657	6441	6402	96.17	99.39	97.76
Mre ⁺ 0.8	6657	6415	6487	95.94	99.56	97.72
Mre ⁺ 0.95	6657	6366	6344	95.30	99.65	97.43
Mre ⁺ 0.99	6657	6319	6300	94.64	99.70	97.10
GC/Mre ⁺	6657	6354	6348	95.36	99.91	97.58

Tuning Mre on F7

	Ref.	Test	Correct	Recall	Prec.	F-msr
Mre 0.5	21207	19512	18801	88.65	96.36	92.35
Mre 0.8	21207	19089	18531	87.38	97.08	91.97
Mre 0.95	21207	18571	18105	85.37	97.49	91.03
Mre 0.99	21207	17900	17505	82.54	97.79	89.52
GC/Mre	21207	17728	17661	83.28	99.62	90.72

- F-measure is always better for an aligner in solo mode (Mre⁺ and Mre)
- A tandem always wins in precision
- Mre tuned to higher precision still lags behind a tandem

5 Conclusions and future planes

- Alignment depends on properties of the input, alignment methods differ in their sensitivity to such properties. Thus, word-correspondence methods fare better on noisy texts, where sentence-length-based methods give mixed results.
- Lack of linguistic resources (bilingual lexica) need not be an obstacle for the application of lexically-based methods.
- Higher precision can help the human proofreader focus on unsafe links.
- In order to raise precision, sets of links proposed by different aligners can be intersected. This improves precision by 0.5–3.6 percentage points.

Future:

- lemmatization
- meta-aligner

References

- Gale, W. A. & Church, K. W. (1993). A program for aligning sentences in bilingual corpora. *Computational Linguistics*, **19**(1), 75–102.
- Langlais, P., Simard, M., & Véronis, J. (1998). Methods and practical issues in evaluating alignment techniques. In *Proceedings of the 17th International Conference on Computational Linguistics*, pages 711–717. Association for Computational Linguistics.
- Melamed, I. D. (1997). A portable algorithm for mapping bitext correspondence. In P. R. Cohen and W. Wahlster, editors, *Proceedings of the Thirty-Fifth Annual Meeting of the Association for Computational Linguistics and Eighth Conference of the European Chapter of the Association for Computational Linguistics*, pages 305–312, Somerset, New Jersey. Association for Computational Linguistics.
- Moore, R. C. (2002). Fast and accurate sentence alignment of bilingual corpora. In *AMTA '02: Proceedings* of the 5th Conference of the Association for Machine Translation in the Americas on Machine Translation: From Research to Real Users, pages 135–144, London, UK. Springer-Verlag.
- Singh, A. K. & Husain, S. (2005). Comparison, selection and use of sentence alignment algorithms for new language pairs. In *Proceedings of the ACL Workshop on Building and Using Parallel Texts*, pages 99–106, Ann Arbor, Michigan. Association for Computational Linguistics.
- Tiedemann, J. & Nygaard, L. (2004). The OPUS corpus parallel & free. In *Proceedings of the Fourth International Conference on Language Resources and Evaluation (LREC'04)*, Lisbon, Portugal.
- Véronis, J. & Langlais, P. (2000). Evaluation of parallel text alignment systems: the arcade project. In J. Véronis, editor, *Parallel text processing: Alignment and use of translation corpora*, pages 369–388. Kluwer Academic Publishers, Dordrecht.

Typeset on 15th November 2005, at 13:26.